Fardet Tanguy, Ballandras Mathieu, Bottani Samuel, Métens Stéphane, Monceau Pascal
Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot, USPC, Paris, France.
Department of Physics, Université d'Evry-Val d'Essonne, Évry, France.
Front Neurosci. 2018 Feb 6;12:41. doi: 10.3389/fnins.2018.00041. eCollection 2018.
Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.
实验和数值研究表明,孤立的振荡神经元群体能够自发同步,并产生涉及整个网络的周期性爆发。这种行为在啮齿动物皮层或海马体中的培养神经元中尤为明显。我们在此表明,这种网络爆发的一个充分条件是存在表现出尖峰驱动适应性的兴奋性振荡神经元群体。我们提供了一个分析模型来分析由耦合的自适应指数积分发放神经元产生的网络爆发。我们表明,对于强突触耦合,内在的紧张性发放神经元会演变为达到同步间歇性爆发状态。抑制性神经元或可塑性突触的存在可以通过多种方式调节这种动态,但对于其出现并非必要条件。借助一个简单的自洽方程,我们的模型给出了一个直观且半定量的工具来理解爆发行为。此外,它表明超极化后电流足以解释爆发的终止。通过在理论参数和离子通道特性之间进行全面映射,我们讨论了可能涉及的生物学机制以及所探索参数空间的相关性。这样的见解使我们能够提出关于阻断快速、中等或缓慢超极化后通道将如何影响发放率、爆发持续时间以及爆发间隔的可实验验证的预测。