Knelman Joseph E, Graham Emily B, Prevéy Janet S, Robeson Michael S, Kelly Patrick, Hood Eran, Schmidt Steve K
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States.
Pacific Northwest National Laboratory (U.S. Department of Energy), Richland, WA, United States.
Front Microbiol. 2018 Feb 6;9:128. doi: 10.3389/fmicb.2018.00128. eCollection 2018.
Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional ssp. (Sitka alder) to late successional (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.
过去的研究表明,植物与微生物的相互作用作为生态系统演替的驱动因素具有重要意义,这些研究主要关注植物如何塑造土壤微生物群落,进而影响后续植物的表现和植物群落的组装。然而,这些研究在很大程度上将微生物群落视为一个黑匣子。在本研究中,我们试图探究在原生演替中,从早期演替的桤木亚种(锡特卡桤木)到晚期演替的(锡特卡云杉)标志性转变如何反映在细菌群落结构和与这两种植物相互作用相关的氮循环的特定地下变化中。我们在冰川前缘研究了早期演替的桤木改良土壤,以描绘桤木如何随着优势度的增加改变土壤微生物群落。此外,我们通过添加渗滤液的微观实验评估了晚期演替的云杉植物对这些早期演替的桤木改良微生物群落及相关氮循环的影响。我们展示了桤木数量的增加如何选择特定的细菌类群。此外,我们发现云杉渗滤液在很大程度上显著改变了这些微生物群落的组成,主要是通过促使桤木富集的类群数量下降,包括细菌共生体。我们发现这些影响是云杉特有的,超出了一般渗滤液的影响。我们的工作还证明了云杉对铵可用性的独特影响。这些见解支持了将植物与微生物相互作用的重要性与晚期演替植物以及更普遍的种间植物相互作用联系起来的理论。