Suppr超能文献

单克隆抗体溶液中的结构与弛豫。

Structure and Relaxation in Solutions of Monoclonal Antibodies.

机构信息

Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.

Late Stage Pharmaceutical Development , Genentech Inc. , South San Francisco , California 94080 , United States.

出版信息

J Phys Chem B. 2018 Mar 22;122(11):2867-2880. doi: 10.1021/acs.jpcb.7b11053. Epub 2018 Mar 8.

Abstract

Reversible self-association of therapeutic antibodies is a key factor in high protein solution viscosities. In the present work, a coarse-grained computational model accounting for electrostatic, dispersion, and long-ranged hydrodynamic interactions of two model monoclonal antibodies is applied to understand the nature of self-association, predicting the solution microstructure and resulting transport properties of the solution. For the proteins investigated, the structure factor across a range of solution conditions shows quantitative agreement with neutron-scattering experiments. We observe a homogeneous, dynamical association of the antibodies with no evidence of phase separation. Calculations of self-diffusivity and viscosity from coarse-grained dynamic simulations show the appropriate trends with concentration but, respectively, over- and under-predict the experimentally measured values. By adding constraints to the self-associated clusters that rigidify them under flow, prediction of the transport properties is significantly improved with respect to experimental measurements. We hypothesize that these rigidity constraints are associated with missing degrees of freedom in the coarse-grained model resulting from patchy and heterogeneous interactions among coarse-grained domains. These results demonstrate how structural anisotropy and anisotropy of interactions generated by features at the 2-5 nm length scale in antibodies are sufficient to recover the dynamics and rheological properties of these important macromolecular solutions.

摘要

治疗性抗体的可逆自缔合是导致高蛋白质溶液黏度的关键因素。在本工作中,应用一种粗粒化计算模型来考虑两个模型单克隆抗体的静电、色散和长程流体动力学相互作用,以了解自缔合的本质,预测溶液的微观结构和溶液的传输性质。对于所研究的蛋白质,在一系列溶液条件下的结构因子与中子散射实验定量吻合。我们观察到抗体的均匀、动态缔合,没有相分离的证据。从粗粒化动力学模拟计算得到的自扩散系数和黏度显示出与浓度的适当趋势,但分别过高和过低预测了实验测量值。通过对自缔合簇施加约束,使它们在流动下变得僵硬,从而显著提高了对传输性质的预测,使其与实验测量值相符。我们假设这些刚性约束与粗粒化模型中缺失的自由度有关,这些自由度是由抗体中 2-5nm 长度尺度上的特征产生的各向异性结构和相互作用引起的。这些结果表明,抗体中 2-5nm 长度尺度上的特征产生的各向异性结构和相互作用足以恢复这些重要的大分子溶液的动力学和流变性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验