Suppr超能文献

使用无需颅骨剥离的预处理定量磁化率映射进行脑损伤病变成像。

Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

机构信息

From the Departments of Radiology (S.S., G.K., B.L.)

Department of Biomedical Engineering (Z.L., Y.W.), Cornell University, New York, New York.

出版信息

AJNR Am J Neuroradiol. 2018 Apr;39(4):648-653. doi: 10.3174/ajnr.A5550. Epub 2018 Feb 22.

Abstract

BACKGROUND AND PURPOSE

Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology.

MATERIALS AND METHODS

Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident.

RESULTS

Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping.

CONCLUSIONS

Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury.

摘要

背景与目的

识别脑微出血负担有助于诊断和治疗创伤性脑损伤、中风、高血压和脑淀粉样血管病。基于磁共振成像磁敏感性的方法比 CT 更敏感地检测脑微出血,但除定量磁敏感图外的其他方法提供的结果因场强和 TE 而异,需要额外的相位图来区分血液和钙化,并将脑微出血描绘为晕影伪影。定量磁敏感图提供了组织磁特性的通用量化,而没有这些限制,但传统上需要通过颅骨剥离生成的蒙版,这在组织界面处可能会带来挑战。我们评估了不需要颅骨剥离的预处理定量磁敏感图磁共振成像方法,以改善脑实质和病理学的描绘。

材料与方法

56 例患者进行了 3D 多回波梯度回波采集的脑部磁共振成像。使用常用的基于蒙版的定量磁敏感图方法创建基于蒙版的定量磁敏感图图像,使用基于预条件的总场反转制作预处理定量磁敏感图。所有图像均由神经放射科医师和放射科住院医师进行审查。

结果

10 例(18%)受试者均有创伤性脑损伤,3D 梯度回波成像上显示有血液产物。所有病变在预处理定量磁敏感图上均可见,而在基于蒙版的定量磁敏感图上则有 6 个不可见。31 例(55%)受试者在预处理定量磁敏感图上可见脑实质和/或病变,但在基于蒙版的定量磁敏感图上不可见。6 例(11%)受试者在预处理定量磁敏感图和基于蒙版的定量磁敏感图上均出现脑桥伪影;预处理定量磁敏感图上的伪影更严重。

结论

预处理定量磁敏感图磁共振成像可以在不限制基于蒙版的定量磁敏感图的情况下,将定量磁敏感图成像的优势引入临床实践,特别是在评估与脑微出血相关的病变,如创伤性脑损伤。

相似文献

1
Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.
AJNR Am J Neuroradiol. 2018 Apr;39(4):648-653. doi: 10.3174/ajnr.A5550. Epub 2018 Feb 22.
2
Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury.
Radiology. 2016 Feb;278(2):536-45. doi: 10.1148/radiol.2015150160. Epub 2015 Sep 15.
3
Susceptibility map-weighted imaging (SMWI) for neuroimaging.
Magn Reson Med. 2014 Aug;72(2):337-46. doi: 10.1002/mrm.24920. Epub 2013 Sep 4.
4
Correction of magnetic field inhomogeneity effects for fast quantitative susceptibility mapping.
Magn Reson Med. 2019 Mar;81(3):1645-1658. doi: 10.1002/mrm.27516. Epub 2018 Nov 2.
5
Quantitative Analysis of Punctate White Matter Lesions in Neonates Using Quantitative Susceptibility Mapping and R2* Relaxation.
AJNR Am J Neuroradiol. 2019 Jul;40(7):1221-1226. doi: 10.3174/ajnr.A6114. Epub 2019 Jun 20.
8
Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping.
Magn Reson Med. 2017 Jul;78(1):303-315. doi: 10.1002/mrm.26331. Epub 2016 Jul 28.

本文引用的文献

1
Susceptibility-Based Neuroimaging: Standard Methods, Clinical Applications, and Future Directions.
Curr Radiol Rep. 2017 Mar;5(3). doi: 10.1007/s40134-017-0204-1. Epub 2017 Feb 14.
3
Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping.
Magn Reson Med. 2017 Jul;78(1):303-315. doi: 10.1002/mrm.26331. Epub 2016 Jul 28.
4
Cerebral Microhemorrhages: Significance, Associations, Diagnosis, and Treatment.
Curr Treat Options Neurol. 2016 Aug;18(8):35. doi: 10.1007/s11940-016-0418-1.
5
Cerebral Microbleeds Are Associated With an Increased Risk of Stroke: The Rotterdam Study.
Circulation. 2015 Aug 11;132(6):509-16. doi: 10.1161/CIRCULATIONAHA.115.016261. Epub 2015 Jul 2.
6
Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker.
Magn Reson Med. 2015 Jan;73(1):82-101. doi: 10.1002/mrm.25358. Epub 2014 Jul 17.
7
Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping.
Radiology. 2014 Feb;270(2):496-505. doi: 10.1148/radiol.13122640. Epub 2013 Oct 28.
9
Improved T2* imaging without increase in scan time: SWI processing of 2D gradient echo.
AJNR Am J Neuroradiol. 2013 Nov-Dec;34(11):2092-7. doi: 10.3174/ajnr.A3595. Epub 2013 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验