Suppr超能文献

光合营养生长过程中最佳蛋白质分配模型。

A model of optimal protein allocation during phototrophic growth.

作者信息

Faizi Marjan, Zavřel Tomáš, Loureiro Cristina, Červený Jan, Steuer Ralf

机构信息

Humboldt-Universität zu Berlin, Institut für Biologie, Fachinstitut für Theoretische Biologie (ITB), 10115 Berlin, Germany.

Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno,Czech Republic.

出版信息

Biosystems. 2018 Apr;166:26-36. doi: 10.1016/j.biosystems.2018.02.004. Epub 2018 Feb 21.

Abstract

Photoautotrophic growth depends upon an optimal allocation of finite cellular resources to diverse intracellular processes. Commitment of a certain mass fraction of the proteome to a specific cellular function typically reduces the proteome available for other cellular functions. Here, we develop a semi-quantitative kinetic model of cyanobacterial phototrophic growth to describe such trade-offs of cellular protein allocation. The model is based on coarse-grained descriptions of key cellular processes, in particular carbon uptake, metabolism, photosynthesis, and protein translation. The model is parameterized using literature data and experimentally obtained growth curves. Of particular interest are the resulting cyanobacterial growth laws as fundamental characteristics of cellular growth. We show that the model gives rise to similar growth laws as observed for heterotrophic organisms, with several important differences due to the distinction between light energy and carbon uptake. We discuss recent experimental data supporting the model results and show that coarse-grained growth models have implications for our understanding of the limits of phototrophic growth and bridge a gap between molecular physiology and ecology.

摘要

光合自养生长取决于有限的细胞资源在各种细胞内过程中的最佳分配。蛋白质组中一定质量分数用于特定细胞功能,通常会减少可用于其他细胞功能的蛋白质组。在此,我们建立了一个蓝藻光合生长的半定量动力学模型,以描述细胞蛋白质分配的这种权衡。该模型基于对关键细胞过程的粗粒度描述,特别是碳吸收、代谢、光合作用和蛋白质翻译。该模型使用文献数据和实验获得的生长曲线进行参数化。特别令人感兴趣的是由此产生的蓝藻生长规律,它是细胞生长的基本特征。我们表明,该模型产生的生长规律与异养生物观察到的相似,但由于光能和碳吸收的区别存在一些重要差异。我们讨论了支持模型结果的近期实验数据,并表明粗粒度生长模型对我们理解光合生长的极限具有重要意义,并且弥合了分子生理学与生态学之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验