University of Alabama at Birmingham, Birmingham, AL, USA.
Drexel University, Philadelphia, PA, USA.
Neuropsychologia. 2018 Jul 1;115:112-123. doi: 10.1016/j.neuropsychologia.2017.08.025. Epub 2017 Aug 26.
Voxel-based lesion-symptom mapping (VLSM) is an important method for basic and translational human neuroscience research. VLSM leverages modern neuroimaging analysis techniques to build on the classic approach of examining the relationship between location of brain damage and cognitive deficits. Testing an association between deficit severity and lesion status in each voxel involves very many individual tests and requires statistical correction for multiple comparisons. Several strategies have been adapted from analysis of functional neuroimaging data, though VLSM faces a more difficult trade-off between avoiding false positives and statistical power (missing true effects). We used simulated and real deficit scores from a sample of approximately 100 individuals with left hemisphere stroke to evaluate two such permutation-based approaches. Using permutation to set a minimum cluster size identified a region that systematically extended well beyond the true region, making it ill-suited to identifying brain-behavior relationships. In contrast, generalizing the standard permutation-based family-wise error correction approach provided a principled way to balance false positives and false negatives. Comparison with the widely-used parametric false discovery rate (FDR) correction showed that FDR produces anti-conservative results at smaller sample sizes (N = 30-60). An implementation of the continuous permutation-based FWER correction method described here is included in the lesymap package for lesion-symptom mapping (https://dorianps.github.io/LESYMAP/).
基于体素的病变-症状映射(VLSM)是基础和转化人类神经科学研究的重要方法。VLSM 利用现代神经影像学分析技术,建立在检查大脑损伤位置与认知缺陷之间关系的经典方法基础上。在每个体素中测试缺陷严重程度与病变状态之间的关联涉及到非常多的个体测试,并且需要进行多次比较的统计校正。已经从功能神经影像学数据的分析中采用了几种策略,尽管 VLSM 在避免假阳性和统计能力(错过真实效果)之间面临着更困难的权衡。我们使用来自大约 100 名左侧半球中风个体的模拟和真实缺陷分数来评估两种基于置换的方法。使用置换来设置最小聚类大小确定了一个系统地延伸超出真实区域的区域,因此不适合识别脑-行为关系。相比之下,推广基于标准置换的总体错误率校正方法提供了一种平衡假阳性和假阴性的原则方法。与广泛使用的参数假发现率(FDR)校正相比,FDR 在较小的样本量(N=30-60)下产生反保守的结果。此处描述的连续基于置换的 FWER 校正方法的实现包含在病变-症状映射的 lesymap 包中(https://dorianps.github.io/LESYMAP/)。