Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC), Campinas, São Paulo, Brazil.
Crit Care Med. 2018 Jun;46(6):e609-e617. doi: 10.1097/CCM.0000000000003078.
To compare a time-controlled adaptive ventilation strategy, set in airway pressure release ventilation mode, versus a protective mechanical ventilation strategy in pulmonary and extrapulmonary acute respiratory distress syndrome with similar mechanical impairment.
Animal study.
Laboratory investigation.
Forty-two Wistar rats.
Pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome were induced by instillation of Escherichia coli lipopolysaccharide intratracheally or intraperitoneally, respectively. After 24 hours, animals were randomly assigned to receive 1 hour of volume-controlled ventilation (n = 7/etiology) or time-controlled adaptive ventilation (n = 7/etiology) (tidal volume = 8 mL/kg). Time-controlled adaptive ventilation consisted of the application of continuous positive airway pressure 2 cm H2O higher than baseline respiratory system peak pressure for a time (Thigh) of 0.75-0.85 seconds. The release pressure (Plow = 0 cm H2O) was applied for a time (Tlow) of 0.11-0.18 seconds. Tlow was set to target an end-expiratory flow to peak expiratory flow ratio of 75%. Nonventilated animals (n = 7/etiology) were used for Diffuse Alveolar Damage and molecular biology markers analyses.
Time-controlled adaptive ventilation increased mean respiratory system pressure regardless of acute respiratory distress syndrome etiology. The Diffuse Alveolar Damage score was lower in time-controlled adaptive ventilation compared with volume-controlled ventilation in pulmonary acute respiratory distress syndrome and lower in time-controlled adaptive ventilation than nonventilated in extrapulmonary acute respiratory distress syndrome. In pulmonary acute respiratory distress syndrome, volume-controlled ventilation, but not time-controlled adaptive ventilation, increased the expression of amphiregulin, vascular cell adhesion molecule-1, and metalloproteinase-9. Collagen density was higher, whereas expression of decorin was lower in time-controlled adaptive ventilation than nonventilated, independent of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, time-controlled adaptive ventilation increased syndecan expression.
In pulmonary acute respiratory distress syndrome, time-controlled adaptive ventilation led to more pronounced beneficial effects on expression of biomarkers related to overdistension and extracellular matrix homeostasis.
比较在气道压力释放通气模式下设置的时间控制自适应通气策略与具有相似机械损伤的肺外和肺急性呼吸窘迫综合征中的保护性机械通气策略。
动物研究。
实验室研究。
42 只 Wistar 大鼠。
通过气管内或腹腔内滴注大肠杆菌脂多糖分别诱导肺急性呼吸窘迫综合征和肺外急性呼吸窘迫综合征。24 小时后,动物随机分为接受容量控制通气(n = 7/病因)或时间控制自适应通气(n = 7/病因)(潮气量 = 8mL/kg)1 小时。时间控制自适应通气由连续气道正压(CPAP)施加组成,CPAP 比基线呼吸系统峰压高 2cmH2O,持续时间(Thigh)为 0.75-0.85 秒。释放压力(Plow = 0cmH2O)持续时间(Tlow)为 0.11-0.18 秒。Tlow 设置为目标呼气末流量与呼气峰流量之比为 75%。未通气动物(n = 7/病因)用于弥漫性肺泡损伤和分子生物学标志物分析。
时间控制自适应通气增加了呼吸系统的平均压力,与急性呼吸窘迫综合征的病因无关。与容量控制通气相比,时间控制自适应通气在肺急性呼吸窘迫综合征中降低了弥漫性肺泡损伤评分,与未通气相比,在外周急性呼吸窘迫综合征中降低了时间控制自适应通气。在肺急性呼吸窘迫综合征中,只有容量控制通气而不是时间控制自适应通气增加了 Amphiregulin、血管细胞黏附分子-1 和金属蛋白酶-9 的表达。胶原蛋白密度更高,而在外周性急性呼吸窘迫综合征中,与未通气相比,时间控制自适应通气的 Decorin 表达降低,独立于急性呼吸窘迫综合征的病因。在肺急性呼吸窘迫综合征中,但在外周性急性呼吸窘迫综合征中,时间控制自适应通气增加了 Syndecan 的表达。
在肺急性呼吸窘迫综合征中,时间控制自适应通气对过度膨胀和细胞外基质稳态相关生物标志物的表达产生了更明显的有益影响。