Suppr超能文献

适应全球土地利用和管理强度变化以应对气候和大气二氧化碳变化。

Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide.

机构信息

School of Geosciences, University of Edinburgh, Edinburgh, UK.

Global Academy of Agriculture and Food Security, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.

出版信息

Glob Chang Biol. 2018 Jul;24(7):2791-2809. doi: 10.1111/gcb.14110. Epub 2018 Mar 24.

Abstract

Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO ) levels' changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained.

摘要

土地利用导致了环境变化,但也受到这些变化的影响。气候和大气二氧化碳(CO )水平的变化改变了农业作物的生产力、植物的需水量和灌溉水的可获得性。全球粮食系统需要对此做出反应并进行适应,例如改变农业实践,包括改变作物类型或管理强度,或在国家内部和国家之间转移耕地。由于影响和相关适应措施具有空间特异性,了解土地利用对环境变化的适应需要具有捕捉空间变化的作物生产力表示。还需要考虑管理实践变化的影响,包括施肥和灌溉率。迄今为止,全球土地利用模型使用相对聚合的空间表示(通常在区域水平)来选择农业扩张或集约化水平,这些表示无法描述这些空间差异化响应的细节。在这里,我们展示了一种新的全球建模方法的结果,该方法使用更详细的生物物理产量响应来输入,具有比以前更大的空间特异性。该方法将动态全球植被模型(LPJ-GUESS)与新的土地利用和粮食系统模型(PLUMv2)耦合在一起,结果与 1970 年以来的历史土地利用变化进行了基准测试。探讨了到 2100 年的土地利用结果,结果表明,由于大气 CO 浓度升高带来的施肥和增强的水利用效率效应,气候强制增加的强度减少了粮食生产所需的投入,但需要在全球和局部生产模式上进行大量转移。结果表明,全球农业和粮食系统的适应具有很大的能力,可以减少气候变化的负面影响,并从其积极结果中获得更大的收益。因此,农业扩张和集约化可能低于以前研究中发现的水平,因为这些研究受到空间细节和过程考虑的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a594/6032878/65dc1b5b784b/GCB-24-2791-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验