Suppr超能文献

壳聚糖盐酸盐/透明质酸纳米粒经 mPEG 修饰作为长循环纳米载体用于米托蒽醌的系统给药。

Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone.

机构信息

Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China.

Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.

出版信息

Int J Biol Macromol. 2018 Jul 1;113:345-353. doi: 10.1016/j.ijbiomac.2018.02.128. Epub 2018 Feb 24.

Abstract

The purpose of this study was to prepare and investigate long circulating polyelectrolyte nanoparticles (PENPs) based on hydrochloride chitosan (HCS) and hyaluronic acid (HA) coated by methoxy poly(ethylene glycol) (mPEG). Mitoxantrone hydrochloride (MTO) was selected as a model drug. TEM showed that MTO-loaded PENPs (MTO-PENPs) were spherical but MTO-loaded PENPs coated by mPEG (MTO-mPEG-PENPs) had a slightly rough morphology with an average hydrodynamic diameter around 200-240nm. The EE of MTO-mPEG-PENPs and MTO-PENPs were 99.02% and 98.33%, respectively. DSC thermograms showed MTO existed at the molecular level inside the MTO-mPEG-PENPs. Drug release studies revealed MTO-mPEG-PENPs offered better control over the release of drug than uncoated counterparts. Observations of the pharmacokinetic study reveal that MTO-mPEG-PENPs exhibited significant prolongation in blood circulation of drug compared to MTO-PENPs and MTO solution in rats after intravenous administration. The MRT of MTO increased from 117.83min (MTO solutions) and 162.34min (MTO-PENPs) to 344.42min (MTO-mPEG-PENPs). The AUC of MTO in MTO-mPEG-PENPs increased 2.52-fold and 3.41-fold compared to MTO-PENPs and MTO solution, respectively. In conclusion, mPEG coated PENPs based on HCS/HA could present a workable strategy for long-circulating systemic delivery of drugs.

摘要

本研究旨在制备并研究基于盐酸壳聚糖(HCS)和透明质酸(HA)的长循环聚电解质纳米粒(PENPs),并由甲氧基聚乙二醇(mPEG)进行包覆。米托蒽醌盐酸盐(MTO)被选为模型药物。TEM 显示,载 MTO 的 PENPs(MTO-PENPs)为球形,但包覆 mPEG 的 MTO-PENPs(MTO-mPEG-PENPs)具有略微粗糙的形态,平均水动力直径约为 200-240nm。MTO-mPEG-PENPs 和 MTO-PENPs 的 EE 分别为 99.02%和 98.33%。DSC 热图谱显示 MTO 以分子水平存在于 MTO-mPEG-PENPs 中。药物释放研究表明,与未包覆的对照物相比,MTO-mPEG-PENPs 能更好地控制药物的释放。药代动力学研究观察结果表明,与 MTO-PENPs 和 MTO 溶液相比,MTO-mPEG-PENPs 静脉给药后在大鼠体内的药物血液循环时间明显延长。MTO 的 MRT 从 117.83min(MTO 溶液)和 162.34min(MTO-PENPs)增加到 344.42min(MTO-mPEG-PENPs)。与 MTO-PENPs 和 MTO 溶液相比,MTO-mPEG-PENPs 中的 MTO AUC 分别增加了 2.52 倍和 3.41 倍。总之,基于 HCS/HA 的 mPEG 包覆 PENPs 可为药物的长循环系统给药提供可行的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验