Suppr超能文献

非小细胞肺癌患者的基因组学既可以证实 PD-L1 的表达,又可以预测其对抗 PD-1 免疫治疗的临床反应。

Genomics of NSCLC patients both affirm PD-L1 expression and predict their clinical responses to anti-PD-1 immunotherapy.

机构信息

Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, 801 Newton Road, Iowa City, IA, 52242, USA.

Cellworks Research India Ltd., Whitefield, Bangalore, 560066, India.

出版信息

BMC Cancer. 2018 Feb 27;18(1):225. doi: 10.1186/s12885-018-4134-y.

Abstract

BACKGROUND

Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses.

METHODS

We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses.

RESULTS

Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses.

CONCLUSIONS

Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.

摘要

背景

程序性死亡配体 1(PD-L1)是一种共刺激和免疫检查点蛋白。非小细胞肺癌(NSCLC)中的 PD-L1 表达是适应性耐药的标志,其表达常被用于预测程序性死亡 1(PD-1)和 PD-L1 免疫治疗的结果。然而,并非所有患者都能从中获益,需要新的方法来帮助选择接受 PD-1 或 PD-L1 免疫治疗的患者。在这里,我们假设患者肿瘤细胞的基因组学影响细胞信号转导和 PD-L1、趋化因子和免疫抑制分子的表达,这些特征可用于预测患者的临床反应。

方法

我们使用了最近 NSCLC 患者接受 pembrolizumab 治疗的数据集。鉴定患者外显子中的有害基因突变谱,并将其注释到癌症网络中,以创建 NSCLC 患者特异性预测计算模拟模型。对癌症网络、模拟模型预测以及患者特异性预测与临床反应之间的 PD-1 匹配率进行了验证检查。

结果

使用这 24 种趋化因子和免疫抑制分子的表达谱来识别哪些患者会对 PD-1 免疫治疗有反应,哪些患者不会有反应。PD-L1 表达本身不足以预测哪些患者会对 PD-1 免疫治疗有反应或无反应。添加趋化因子和免疫抑制分子的表达谱可使患者模型在预测和报告的患者临床反应之间达到 85.0%以上的预测相关性。

结论

我们的研究结果表明,趋化因子和免疫抑制分子的表达谱可用于准确预测临床反应,从而区分哪些患者会从 PD-1 或 PD-L1 免疫治疗中受益,哪些患者不会受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ea/5897943/74950e2208ca/12885_2018_4134_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验