Suppr超能文献

细胞基因组学和免疫抑制生物标志物表达对头颈部鳞状细胞癌中PD-L1免疫治疗反应的影响——一项计算研究

Cell genomics and immunosuppressive biomarker expression influence PD-L1 immunotherapy treatment responses in HNSCC-a computational study.

作者信息

Bates Amber M, Lanzel Emily A, Qian Fang, Abbasi Taher, Vali Shireen, Brogden Kim A

机构信息

Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA.

Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.

出版信息

Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 Aug;124(2):157-164. doi: 10.1016/j.oooo.2017.05.474. Epub 2017 May 25.

Abstract

OBJECTIVES

Programmed death-ligand 1 (PD-L1) expression is correlated with objective response rates to PD-1 and PD-L1 immunotherapies. However, both immunotherapies have only demonstrated 12%-24.8% objective response rates in patients with head and neck squamous cell carcinoma (HNSCC), demonstrating a need for a more accurate method to identify those who will respond before their therapy. Immunohistochemistry to detect PD-L1 reactivity in tumors can be challenging, and additional methods are needed to predict and confirm PD-L1 expression. Here, we hypothesized that HNSCC tumor cell genomics influences cell signaling and downstream effects on immunosuppressive biomarkers and that these profiles can predict patient clinical responses.

STUDY DESIGN

We identified deleterious gene mutations in SCC4, SCC15, and SCC25 and created cell line-specific predictive computational simulation models. The expression of 24 immunosuppressive biomarkers were then predicted and used to sort cell lines into those that would respond to PD-L1 immunotherapy and those that would not.

RESULTS

SCC15 and SCC25 were identified as cell lines that would respond to PD-L1 immunotherapy treatment and SCC4 was identified as a cell line that would not likely respond to PD-L1 immunotherapy treatment.

CONCLUSIONS

This approach, when applied to HNSCC cells, has the ability to predict PD-L1 expression and predict PD-1- or PD-L1-targeted treatment responses in these patients.

摘要

目的

程序性死亡配体1(PD-L1)表达与PD-1和PD-L1免疫疗法的客观缓解率相关。然而,这两种免疫疗法在头颈部鳞状细胞癌(HNSCC)患者中的客观缓解率仅为12% - 24.8%,这表明需要一种更准确的方法来在治疗前识别哪些患者会产生反应。通过免疫组织化学检测肿瘤中PD-L1反应性具有挑战性,因此需要额外的方法来预测和确认PD-L1表达。在此,我们假设HNSCC肿瘤细胞基因组学影响细胞信号传导以及对免疫抑制生物标志物的下游效应,并且这些特征可以预测患者的临床反应。

研究设计

我们在SCC4、SCC15和SCC25中鉴定出有害基因突变,并创建了细胞系特异性预测计算模拟模型。然后预测24种免疫抑制生物标志物的表达,并用于将细胞系分为对PD-L1免疫疗法有反应和无反应的两类。

结果

SCC15和SCC25被鉴定为对PD-L1免疫疗法有反应的细胞系,而SCC4被鉴定为不太可能对PD-L1免疫疗法有反应的细胞系。

结论

这种方法应用于HNSCC细胞时,有能力预测PD-L1表达,并预测这些患者对PD-1或PD-L1靶向治疗的反应。

相似文献

1
Cell genomics and immunosuppressive biomarker expression influence PD-L1 immunotherapy treatment responses in HNSCC-a computational study.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 Aug;124(2):157-164. doi: 10.1016/j.oooo.2017.05.474. Epub 2017 May 25.
4
Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models.
Cancer Immunol Immunother. 2016 Dec;65(12):1511-1522. doi: 10.1007/s00262-016-1907-5. Epub 2016 Sep 29.
7
PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer.
Clin Cancer Res. 2017 Jun 15;23(12):3158-3167. doi: 10.1158/1078-0432.CCR-16-1761.
10
Frameshift events predict anti-PD-1/L1 response in head and neck cancer.
JCI Insight. 2018 Feb 22;3(4). doi: 10.1172/jci.insight.98811.

引用本文的文献

2
Mast cell marker gene signature in head and neck squamous cell carcinoma.
BMC Cancer. 2022 May 24;22(1):577. doi: 10.1186/s12885-022-09673-3.
3
Tongue Cancer Cell-Derived CCL20 Induced by Interaction With Macrophages Promotes CD163 Expression on Macrophages.
Front Oncol. 2021 Jun 9;11:667174. doi: 10.3389/fonc.2021.667174. eCollection 2021.
4
The immunotherapeutic role of indoleamine 2,3-dioxygenase in head and neck squamous cell carcinoma: A systematic review.
Clin Otolaryngol. 2021 Sep;46(5):919-934. doi: 10.1111/coa.13794. Epub 2021 May 30.
5
HBD3 Induces PD-L1 Expression on Head and Neck Squamous Cell Carcinoma Cell Lines.
Antibiotics (Basel). 2019 Sep 24;8(4):161. doi: 10.3390/antibiotics8040161.
6
Computational Models Accurately Predict Multi-Cell Biomarker Profiles in Inflammation and Cancer.
Sci Rep. 2019 Jul 26;9(1):10877. doi: 10.1038/s41598-019-47381-4.

本文引用的文献

1
Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models.
Cancer Immunol Immunother. 2016 Dec;65(12):1511-1522. doi: 10.1007/s00262-016-1907-5. Epub 2016 Sep 29.
3
PD-L1 Detection in Tumors Using [(64)Cu]Atezolizumab with PET.
Bioconjug Chem. 2016 Sep 21;27(9):2103-10. doi: 10.1021/acs.bioconjchem.6b00348. Epub 2016 Aug 9.
5
CANCER IMMUNOLOGY. The "cancer immunogram".
Science. 2016 May 6;352(6286):658-60. doi: 10.1126/science.aaf2834.
6
PD-L1 Expression in Lung Cancer.
J Thorac Oncol. 2016 Jul;11(7):964-75. doi: 10.1016/j.jtho.2016.04.014. Epub 2016 Apr 23.
7
Predictive Markers for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Lung Cancer.
J Thorac Oncol. 2016 Jul;11(7):976-88. doi: 10.1016/j.jtho.2016.02.015. Epub 2016 Mar 2.
8
Genetic Basis for PD-L1 Expression in Squamous Cell Carcinomas of the Cervix and Vulva.
JAMA Oncol. 2016 Apr;2(4):518-22. doi: 10.1001/jamaoncol.2015.6326.
10
Programmed Death Ligand-1 Immunohistochemistry: Friend or Foe?
Arch Pathol Lab Med. 2016 Apr;140(4):326-31. doi: 10.5858/arpa.2015-0522-SA. Epub 2016 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验