Joshi Chaitali, Farsi Alessandro, Clemmen Stéphane, Ramelow Sven, Gaeta Alexander L
Department of Applied Physics and Applied Math, Columbia University, New York, NY, 10027, USA.
Applied and Engineering Physics, Cornell University, Ithaca, NY, 14850, USA.
Nat Commun. 2018 Feb 27;9(1):847. doi: 10.1038/s41467-018-03254-4.
Parametric single-photon sources are well suited for large-scale quantum networks due to their potential for photonic integration. Active multiplexing of photons can overcome the intrinsically probabilistic nature of these sources, resulting in near-deterministic operation. However, previous implementations using spatial and temporal multiplexing scale unfavorably due to rapidly increasing switching losses. Here, we break this limitation via frequency multiplexing in which switching losses remain fixed irrespective of the number of multiplexed modes. We use low-noise optical frequency conversion for efficient frequency switching and demonstrate multiplexing of three modes. We achieve a generation rate of 4.6 × 10 photons per second with an ultra-low g(0) = 0.07 indicating high single-photon purity. Our scalable, all-fiber multiplexing system has a total loss of just 1.3 dB, such that the 4.8 dB multiplexing enhancement markedly overcomes switching loss. Our approach offers a promising path to creating a deterministic photon source on an integrated chip-based platform.
由于具有光子集成的潜力,参数单光子源非常适合大规模量子网络。光子的主动复用可以克服这些源固有的概率性质,从而实现近确定性操作。然而,由于开关损耗迅速增加,以前使用空间和时间复用的实现方式在规模上并不理想。在这里,我们通过频率复用打破了这一限制,其中开关损耗与复用模式的数量无关,保持固定。我们使用低噪声光学频率转换进行高效的频率切换,并展示了三种模式的复用。我们实现了每秒4.6×10个光子的产生率,超低的g(0)=0.07,表明单光子纯度很高。我们可扩展的全光纤复用系统总损耗仅为1.3dB,因此4.8dB的复用增强显著克服了开关损耗。我们的方法为在基于集成芯片的平台上创建确定性光子源提供了一条有前景的途径。