Zhu Di, Chen Changchen, Yu Mengjie, Shao Linbo, Hu Yaowen, Xin C J, Yeh Matthew, Ghosh Soumya, He Lingyan, Reimer Christian, Sinclair Neil, Wong Franco N C, Zhang Mian, Lončar Marko
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore.
Light Sci Appl. 2022 Nov 17;11(1):327. doi: 10.1038/s41377-022-01029-7.
Manipulating the frequency and bandwidth of nonclassical light is essential for implementing frequency-encoded/multiplexed quantum computation, communication, and networking protocols, and for bridging spectral mismatch among various quantum systems. However, quantum spectral control requires a strong nonlinearity mediated by light, microwave, or acoustics, which is challenging to realize with high efficiency, low noise, and on an integrated chip. Here, we demonstrate both frequency shifting and bandwidth compression of heralded single-photon pulses using an integrated thin-film lithium niobate (TFLN) phase modulator. We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range (±641 GHz or ±5.2 nm), enabling high visibility quantum interference between frequency-nondegenerate photon pairs. We further operate the modulator as a time lens and demonstrate over eighteen-fold (6.55 nm to 0.35 nm) bandwidth compression of single photons. Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.
操控非经典光的频率和带宽对于实现频率编码/复用量子计算、通信及网络协议,以及弥合各种量子系统间的光谱失配至关重要。然而,量子光谱控制需要由光、微波或声学介导的强非线性,要在高效率、低噪声且集成在芯片上的条件下实现这一点具有挑战性。在此,我们展示了使用集成薄膜铌酸锂(TFLN)相位调制器对预示单光子脉冲进行频移和带宽压缩。我们在太赫兹范围(±641 GHz或±5.2 nm)实现了电信单光子创纪录的高电光频率剪切,使得频率非简并光子对之间能够实现高可见度量子干涉。我们进一步将调制器用作时间透镜,并展示了单光子超过十八倍(从6.55 nm到0.35 nm)的带宽压缩。我们的结果展示了用于可扩展光子量子信息处理的片上量子光谱控制的可行性和前景。