Suppr超能文献

使用集成薄膜铌酸锂调制器对非经典光脉冲进行光谱控制。

Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator.

作者信息

Zhu Di, Chen Changchen, Yu Mengjie, Shao Linbo, Hu Yaowen, Xin C J, Yeh Matthew, Ghosh Soumya, He Lingyan, Reimer Christian, Sinclair Neil, Wong Franco N C, Zhang Mian, Lončar Marko

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore.

出版信息

Light Sci Appl. 2022 Nov 17;11(1):327. doi: 10.1038/s41377-022-01029-7.

Abstract

Manipulating the frequency and bandwidth of nonclassical light is essential for implementing frequency-encoded/multiplexed quantum computation, communication, and networking protocols, and for bridging spectral mismatch among various quantum systems. However, quantum spectral control requires a strong nonlinearity mediated by light, microwave, or acoustics, which is challenging to realize with high efficiency, low noise, and on an integrated chip. Here, we demonstrate both frequency shifting and bandwidth compression of heralded single-photon pulses using an integrated thin-film lithium niobate (TFLN) phase modulator. We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range (±641 GHz or ±5.2 nm), enabling high visibility quantum interference between frequency-nondegenerate photon pairs. We further operate the modulator as a time lens and demonstrate over eighteen-fold (6.55 nm to 0.35 nm) bandwidth compression of single photons. Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.

摘要

操控非经典光的频率和带宽对于实现频率编码/复用量子计算、通信及网络协议,以及弥合各种量子系统间的光谱失配至关重要。然而,量子光谱控制需要由光、微波或声学介导的强非线性,要在高效率、低噪声且集成在芯片上的条件下实现这一点具有挑战性。在此,我们展示了使用集成薄膜铌酸锂(TFLN)相位调制器对预示单光子脉冲进行频移和带宽压缩。我们在太赫兹范围(±641 GHz或±5.2 nm)实现了电信单光子创纪录的高电光频率剪切,使得频率非简并光子对之间能够实现高可见度量子干涉。我们进一步将调制器用作时间透镜,并展示了单光子超过十八倍(从6.55 nm到0.35 nm)的带宽压缩。我们的结果展示了用于可扩展光子量子信息处理的片上量子光谱控制的可行性和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62e9/9672118/1f8b047179b1/41377_2022_1029_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验