Suppr超能文献

抗 CRISPR 蛋白 AcrIIA2 和 AcrIIA4 对酿酒酵母中基因驱动的抑制作用。

Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA.

Department of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA.

出版信息

Microbiology (Reading). 2018 Apr;164(4):464-474. doi: 10.1099/mic.0.000635. Epub 2018 Feb 28.

Abstract

Given the widespread use and application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas gene editing system across many fields, a major focus has been the development, engineering and discovery of molecular means to precisely control and regulate the enzymatic function of the Cas9 nuclease. To date, a variety of Cas9 variants and fusion assemblies have been proposed to provide temporally inducible and spatially controlled editing functions. The discovery of a new class of 'anti-CRISPR' proteins, evolved from bacteriophage in response to the prokaryotic nuclease-based immune system, provides a new platform for control over genomic editing. One Cas9-based application of interest to the field of population control is that of the 'gene drive'. Here, we demonstrate use of the AcrIIA2 and AcrIIA4 proteins to inhibit active gene drive systems in budding yeast. Furthermore, an unbiased mutational scan reveals that titration of Cas9 inhibition may be possible by modification of the anti-CRISPR primary sequence.

摘要

鉴于成簇规律间隔短回文重复序列(CRISPR)/Cas 基因编辑系统在许多领域的广泛使用和应用,人们的主要关注点一直是开发、设计和发现分子手段来精确控制和调节 Cas9 核酸酶的酶功能。迄今为止,已经提出了各种 Cas9 变体和融合组装体,以提供时空诱导和空间控制的编辑功能。一类新的“抗 CRISPR”蛋白的发现,是由噬菌体进化而来,以应对基于原核核酸酶的免疫系统,为基因组编辑的控制提供了一个新的平台。种群控制领域中一个引人关注的 Cas9 应用是“基因驱动”。在这里,我们展示了 AcrIIA2 和 AcrIIA4 蛋白在芽殖酵母中抑制活性基因驱动系统的用途。此外,一项无偏突变扫描显示,通过修饰抗 CRISPR 一级序列,可能可以滴定 Cas9 抑制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d27/5982135/00439c316d7f/mic-164-464-g001.jpg

相似文献

1
Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
Microbiology (Reading). 2018 Apr;164(4):464-474. doi: 10.1099/mic.0.000635. Epub 2018 Feb 28.
2
Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in .
Yale J Biol Med. 2017 Dec 19;90(4):643-651. eCollection 2017 Dec.
3
Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor.
Sci Rep. 2018 Mar 1;8(1):3883. doi: 10.1038/s41598-018-22177-0.
4
Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
Mol Cell. 2019 Feb 7;73(3):611-620.e3. doi: 10.1016/j.molcel.2018.11.011. Epub 2018 Dec 31.
6
Disabling Cas9 by an anti-CRISPR DNA mimic.
Sci Adv. 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.
7
Modulating CRISPR/Cas9 genome-editing activity by small molecules.
Drug Discov Today. 2022 Apr;27(4):951-966. doi: 10.1016/j.drudis.2021.11.018. Epub 2021 Nov 22.
8
Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
World J Microbiol Biotechnol. 2018 Sep 29;34(10):153. doi: 10.1007/s11274-018-2537-1.
9
Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.
Mol Cell. 2019 Feb 7;73(3):601-610.e5. doi: 10.1016/j.molcel.2018.11.016. Epub 2018 Dec 27.
10
Fitness effects of CRISPR endonucleases in populations.
Elife. 2022 Sep 22;11:e71809. doi: 10.7554/eLife.71809.

引用本文的文献

1
Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.
Synth Syst Biotechnol. 2024 Dec 20;10(2):356-364. doi: 10.1016/j.synbio.2024.12.005. eCollection 2025 Jun.
3
A deep mutational scanning platform to characterize the fitness landscape of anti-CRISPR proteins.
Nucleic Acids Res. 2024 Dec 11;52(22):e103. doi: 10.1093/nar/gkae1052.
4
Repeat mediated excision of gene drive elements for restoring wild-type populations.
PLoS Genet. 2024 Nov 7;20(11):e1011450. doi: 10.1371/journal.pgen.1011450. eCollection 2024 Nov.
5
From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar;398(3):2259-2273. doi: 10.1007/s00210-024-03509-6. Epub 2024 Oct 15.
6
Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies.
Int J Nanomedicine. 2024 Oct 9;19:10185-10212. doi: 10.2147/IJN.S479068. eCollection 2024.
8
Versatile plant genome engineering using anti-CRISPR-Cas12a systems.
Sci China Life Sci. 2024 Dec;67(12):2730-2745. doi: 10.1007/s11427-024-2704-7. Epub 2024 Aug 15.
10
Repeat mediated excision of gene drive elements for restoring wild-type populations.
bioRxiv. 2023 Nov 23:2023.11.23.568397. doi: 10.1101/2023.11.23.568397.

本文引用的文献

1
Tuning CRISPR-Cas9 Gene Drives in .
G3 (Bethesda). 2018 Mar 2;8(3):999-1018. doi: 10.1534/g3.117.300557.
2
CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains.
Front Microbiol. 2017 Sep 20;8:1773. doi: 10.3389/fmicb.2017.01773. eCollection 2017.
3
The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito.
PLoS Genet. 2017 Oct 4;13(10):e1007039. doi: 10.1371/journal.pgen.1007039. eCollection 2017 Oct.
5
Genome Engineering and Agriculture: Opportunities and Challenges.
Prog Mol Biol Transl Sci. 2017;149:1-26. doi: 10.1016/bs.pmbts.2017.03.011. Epub 2017 May 3.
6
Disabling Cas9 by an anti-CRISPR DNA mimic.
Sci Adv. 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.
7
Overcoming evolved resistance to population-suppressing homing-based gene drives.
Sci Rep. 2017 Jun 19;7(1):3776. doi: 10.1038/s41598-017-02744-7.
8
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.
9
CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations.
Sci Adv. 2017 May 19;3(5):e1601910. doi: 10.1126/sciadv.1601910. eCollection 2017 May.
10
CRISPR/Cas9-mediated correction of human genetic disease.
Sci China Life Sci. 2017 May;60(5):447-457. doi: 10.1007/s11427-017-9032-4. Epub 2017 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验