Suppr超能文献

酵母仍是“野兽”:CRISPR/Cas编辑技术在……中的多样应用

Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in .

作者信息

Giersch Rachael M, Finnigan Gregory C

机构信息

Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS.

出版信息

Yale J Biol Med. 2017 Dec 19;90(4):643-651. eCollection 2017 Dec.

Abstract

The recent discovery and use of CRISPR/Cas9 gene editing technology has provided new opportunities for scientific research in many fields of study including agriculture, genetic disorders, human disease, biotechnology, and basic biological research. The ability to precisely target DNA sequences and either remove, modify, or replace genetic sequences provides a new level of control in nearly all eukaryotic organisms, including budding yeast. Given the many discoveries made in over the past decades spanning genetics, cell biology, and biochemistry, as well as the development of new technologies that have allowed high throughput screening, robotic automation, and a platform for synthetic genome engineering, the yeast community has also started to recognize the utility and complementary nature of CRISPR-based methodologies. Here we present and review a variety of recent uses of Cas9 in budding yeast-both nuclease dependent and independent applications spanning traditional gene editing and replacement, to transcriptional modulation, to novel uses including the development of living circuitry or robotic platforms for synthetic genome construction. Yeast continues to serve as a powerful model system, yet it can still benefit from use of CRISPR for basic research, industrial application, and innovation of new Cas9-based applications.

摘要

CRISPR/Cas9基因编辑技术的最新发现和应用,为包括农业、遗传疾病、人类疾病、生物技术和基础生物学研究在内的许多研究领域的科学研究提供了新机遇。精确靶向DNA序列并去除、修改或替换基因序列的能力,为几乎所有真核生物(包括芽殖酵母)提供了新的控制水平。鉴于过去几十年在遗传学、细胞生物学和生物化学方面取得的众多发现,以及高通量筛选、机器人自动化和合成基因组工程平台等新技术的发展,酵母学界也开始认识到基于CRISPR方法的实用性和互补性。在此,我们展示并回顾Cas9在芽殖酵母中的各种最新应用——从依赖核酸酶和不依赖核酸酶的应用,涵盖传统基因编辑和替换、转录调控,到包括合成基因组构建的活电路或机器人平台开发等新应用。酵母仍然是一个强大的模型系统,但它仍可从CRISPR在基础研究、工业应用和新型基于Cas9应用的创新方面的应用中受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6580/5733842/cf94c490e9a2/yjbm_90_4_643_g01.jpg

相似文献

1
Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in .
Yale J Biol Med. 2017 Dec 19;90(4):643-651. eCollection 2017 Dec.
2
Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
Microbiology (Reading). 2018 Apr;164(4):464-474. doi: 10.1099/mic.0.000635. Epub 2018 Feb 28.
3
Precise genome-wide base editing by the CRISPR Nickase system in yeast.
Sci Rep. 2017 May 18;7(1):2095. doi: 10.1038/s41598-017-02013-7.
4
Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
mBio. 2018 Sep 25;9(5):e01410-18. doi: 10.1128/mBio.01410-18.
5
Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
J Microbiol Methods. 2016 Aug;127:203-205. doi: 10.1016/j.mimet.2016.06.020. Epub 2016 Jun 17.
6
Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
Arch Microbiol. 2021 Dec 26;204(1):79. doi: 10.1007/s00203-021-02723-7.
7
A history of genome editing in Saccharomyces cerevisiae.
Yeast. 2018 May;35(5):355-360. doi: 10.1002/yea.3300. Epub 2018 Jan 29.
8
Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast.
Enzyme Microb Technol. 2022 Sep;159:110056. doi: 10.1016/j.enzmictec.2022.110056. Epub 2022 May 7.
9
A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
Yeast. 2019 Oct;36(10):607-615. doi: 10.1002/yea.3432. Epub 2019 Aug 7.
10
CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
World J Microbiol Biotechnol. 2019 Jul 6;35(7):111. doi: 10.1007/s11274-019-2688-8.

引用本文的文献

1
A Simple, Improved Method for Scarless Genome Editing of Budding Yeast Using CRISPR-Cas9.
Methods Protoc. 2022 Oct 4;5(5):79. doi: 10.3390/mps5050079.
2
Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in .
Front Bioeng Biotechnol. 2022 May 30;10:924914. doi: 10.3389/fbioe.2022.924914. eCollection 2022.
3
Multi-Faceted Systems Biology Approaches Present a Cellular Landscape of Phenolic Compound Inhibition in .
Front Bioeng Biotechnol. 2020 Oct 14;8:539902. doi: 10.3389/fbioe.2020.539902. eCollection 2020.
4
Metabolic Engineering of Wine Strains of .
Genes (Basel). 2020 Aug 20;11(9):964. doi: 10.3390/genes11090964.
5
The CRISPR toolbox in medical mycology: State of the art and perspectives.
PLoS Pathog. 2020 Jan 16;16(1):e1008201. doi: 10.1371/journal.ppat.1008201. eCollection 2020 Jan.
6
CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities.
Front Genet. 2018 Jul 5;9:240. doi: 10.3389/fgene.2018.00240. eCollection 2018.

本文引用的文献

1
Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
Nat Commun. 2017 May 25;8:15459. doi: 10.1038/ncomms15459.
2
CRISPR/Cas9-mediated correction of human genetic disease.
Sci China Life Sci. 2017 May;60(5):447-457. doi: 10.1007/s11427-017-9032-4. Epub 2017 May 3.
3
Precise genome-wide base editing by the CRISPR Nickase system in yeast.
Sci Rep. 2017 May 18;7(1):2095. doi: 10.1038/s41598-017-02013-7.
4
Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.
Trends Microbiol. 2017 Oct;25(10):833-850. doi: 10.1016/j.tim.2017.04.005. Epub 2017 May 15.
5
Automated multiplex genome-scale engineering in yeast.
Nat Commun. 2017 May 4;8:15187. doi: 10.1038/ncomms15187.
6
CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
J Cell Physiol. 2018 Mar;233(3):1844-1859. doi: 10.1002/jcp.25970. Epub 2017 Jun 6.
7
Autophagy: one more Nobel Prize for yeast.
Microb Cell. 2016 Dec 5;3(12):579-581. doi: 10.15698/mic2016.12.544.
8
Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
Microb Cell Fact. 2017 Mar 15;16(1):46. doi: 10.1186/s12934-017-0664-2.
9
Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf4791.
10
"Perfect" designer chromosome V and behavior of a ring derivative.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf4704.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验