Nogueira Juan J, González Leticia
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Wien, Austria; email:
Annu Rev Phys Chem. 2018 Apr 20;69:473-497. doi: 10.1146/annurev-physchem-050317-021013. Epub 2018 Feb 28.
Most processes triggered by ultraviolet (UV) or visible (vis) light in nature take place in complex biological environments. The first step in these photophysical events is the excitation of the absorbing system or chromophore to an electronically excited state. Such an excitation can be monitored by the UV-vis absorption spectrum. A precise calculation of the UV-vis spectrum of a chromophore embedded in an environment is a challenging task that requires the consideration of several ingredients, besides an accurate electronic-structure method for the excited states. Two of the most important are an appropriate description of the interactions between the chromophore and the environment and accounting for the vibrational motion of the whole system. In this contribution, we review the most common theoretical methodologies to describe the environment (including quantum mechanics/continuum and quantum mechanics/molecular mechanics models) and to account for vibrational sampling (including Wigner sampling and molecular dynamics). Further, we illustrate in a series of examples how the lack of these ingredients can lead to a wrong interpretation of the electronic features behind the UV-vis absorption spectrum.
自然界中,大多数由紫外线(UV)或可见光(vis)引发的过程都发生在复杂的生物环境中。这些光物理事件的第一步是吸收系统或发色团被激发到电子激发态。这种激发可以通过紫外-可见吸收光谱进行监测。精确计算嵌入环境中的发色团的紫外-可见光谱是一项具有挑战性的任务,除了需要一种精确的激发态电子结构方法外,还需要考虑几个因素。其中两个最重要的因素是对发色团与环境之间相互作用的恰当描述以及对整个系统振动运动的考虑。在本论文中,我们回顾了描述环境(包括量子力学/连续介质和量子力学/分子力学模型)以及考虑振动采样(包括维格纳采样和分子动力学)的最常见理论方法。此外,我们通过一系列例子说明,缺少这些因素如何导致对紫外-可见吸收光谱背后电子特征的错误解读。