Bishop Steven M, Ercole Ari
Division of Anaesthesia, University of Cambridge, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
Acta Neurochir Suppl. 2018;126:189-195. doi: 10.1007/978-3-319-65798-1_39.
The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance.
Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms.
The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text].
The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.
可靠地检测生理信号中的峰值和谷值对于医学和计算生物学中的许多研究技术至关重要。由于颅内压(ICP)波形具有多尺度特征、随时间变化的形态以及信噪限制,对其进行分析是一项特殊挑战。在此,我们提出一种高效的峰值和谷值检测算法,该算法扩展了Scholkmann等人的小波尺度图方法,并显著提高了算法运行时的性能。
我们改进后的算法(改良的Scholkmann算法)在MATLAB R2015b中开发并进行分析。合成波形(周期性、准周期性和啁啾正弦波)用白高斯噪声进行退化处理,以实现低至5 dB的信噪比,并用于比较原始Scholkmann算法和改良Scholkmann算法的性能。
将改良的Scholkmann算法应用于我们的测试套件时,其误报率(0%)和漏报率(0%)与原始Scholkmann算法相同。对于多分量噪声测试信号进行200次运行的蒙特卡罗模拟,原始Scholkmann算法的实际计算时间为40.96 ± 0.020秒(均值 ± 95%置信区间),改良的Scholkmann算法为1.81 ± 0.003秒(均值 ± 95%置信区间),这表明运行时复杂度从[公式:见原文]提升至[公式:见原文],实现了预期的改进。
在信号参数化、特征提取和波形识别任务中,准确解释波形数据以识别峰值和谷值至关重要。对标准小波尺度图技术的修改产生了一种具有线性计算复杂度的强大算法,特别适用于处理大型、有噪声的生理数据集所带来的挑战。该算法通过单个参数进行优化,能够以最小的额外开销识别子波形特征,并且易于在商用硬件上实时运行。