文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺失数据和因果推断模型中改进的双重稳健估计

Improved double-robust estimation in missing data and causal inference models.

作者信息

Rotnitzky Andrea, Lei Quanhong, Sued Mariela, Robins James M

机构信息

Di Tella University, Saenz Valiente 1010, Buenos Aires 14281, Argentina ,

出版信息

Biometrika. 2012 Jun;99(2):439-456. doi: 10.1093/biomet/ass013. Epub 2012 Apr 29.


DOI:10.1093/biomet/ass013
PMID:23843666
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3635709/
Abstract

Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.

摘要

最近提出的用于从不完全数据估计总体均值以及有限数量反事实均值的双稳健估计量,在结果模型设定错误的情况下,可能比通常的双稳健估计量具有更高的效率。在本文中,我们针对具有不完全横截面或纵向数据的回归模型参数以及具有类似效率特性的横截面数据的边际结构均值模型,推导了一类新的双稳健估计量。与最近的提议不同,我们的估计量求解结果回归估计方程。在一项模拟研究中,新估计量相对于标准双稳健估计量在方差方面有所改进,这与渐近理论所表明的情况一致。

相似文献

[1]
Improved double-robust estimation in missing data and causal inference models.

Biometrika. 2012-6

[2]
Data-Adaptive Bias-Reduced Doubly Robust Estimation.

Int J Biostat. 2016-5-1

[3]
Double robust estimator of average causal treatment effect for censored medical cost data.

Stat Med. 2016-8-15

[4]
Marginal Structural Models with Counterfactual Effect Modifiers.

Int J Biostat. 2018-6-8

[5]
Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.

J Eval Clin Pract. 2017-8

[6]
Doubly robust estimation in missing data and causal inference models.

Biometrics. 2005-12

[7]
MULTIPLY ROBUST ESTIMATORS OF CAUSAL EFFECTS FOR SURVIVAL OUTCOMES.

Scand Stat Theory Appl. 2022-9

[8]
Statistical inference for data-adaptive doubly robust estimators with survival outcomes.

Stat Med. 2019-4-4

[9]
Multiple robust estimation of marginal structural mean models for unconstrained outcomes.

Biometrics. 2019-3

[10]
Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations.

J Am Stat Assoc. 2010-9

引用本文的文献

[1]
Inference for treatment-specific survival curves using machine learning.

J Am Stat Assoc. 2024

[2]
Semisupervised transfer learning for evaluation of model classification performance.

Biometrics. 2024-1-29

[3]
Propensity score analysis with local balance.

Stat Med. 2023-7-10

[4]
Retrospective, Observational Studies for Estimating Vaccine Effects on the Secondary Attack Rate of SARS-CoV-2.

Am J Epidemiol. 2023-6-2

[5]
Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.

J Appl Stat. 2021-11-10

[6]
Highly robust causal semiparametric U-statistic with applications in biomedical studies.

Int J Biostat. 2022-11-28

[7]
Optimising precision and power by machine learning in randomised trials with ordinal and time-to-event outcomes with an application to COVID-19.

J R Stat Soc Ser A Stat Soc. 2022-9-23

[8]
MULTIPLY ROBUST ESTIMATORS OF CAUSAL EFFECTS FOR SURVIVAL OUTCOMES.

Scand Stat Theory Appl. 2022-9

[9]
Robust estimation of models for longitudinal data with dropouts and outliers.

J Appl Stat. 2020-11-10

[10]
Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood.

Biometrika. 2020-12

本文引用的文献

[1]
Comment: improved local efficiency and double robustness.

Int J Biostat. 2008

[2]
Targeted maximum likelihood based causal inference: Part I.

Int J Biostat. 2010

[3]
Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data.

Biometrika. 2009-9

[4]
Empirical efficiency maximization: improved locally efficient covariate adjustment in randomized experiments and survival analysis.

Int J Biostat. 2008

[5]
Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data.

Stat Sci. 2007

[6]
Doubly robust estimation in missing data and causal inference models.

Biometrics. 2005-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索