Yin Lisha, Hai Xiao, Chang Kun, Ichihara Fumihiko, Ye Jinhua
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Small. 2018 Apr;14(14):e1704153. doi: 10.1002/smll.201704153. Epub 2018 Mar 1.
Generally, exfoliation is an efficient strategy to create more edge site so as to expose more active sites on molybdenum disulphide (MoS ). However, the lateral sizes of the resultant MoS monolayers are relatively large (≈50-500 nm), which retain great potential to release more active sites. To further enhance the catalytic performance of MoS , a facile cascade centrifugation-assisted liquid phase exfoliation method is introduced here to fabricate monolayer enriched MoS nanosheets with nanoscale lateral sizes. The as-prepared MoS revealed a high monolayer yield of 36% and small average lateral sizes ranging from 42 to 9 nm under gradient centrifugations, all exhibiting superior catalytic performances toward photocatalytic H generation. Particularly, the optimized monolayer MoS with an average lateral size of 9 nm achieves an apparent quantum efficiency as high as 77.2% on cadmium sulphide at 420 nm. This work demonstrates that the catalytic performances of MoS could be dramatically enhanced by synergistic exfoliation and lateral size engineering as a result of increased density of active sites and shortened charge diffusion distance, paving a new way for design and fabrication of transition-metal dichalcogenides-based materials in the application of hydrogen generation.
一般来说,剥离是一种有效的策略,可用于创建更多边缘位点,从而在二硫化钼(MoS₂)上暴露出更多活性位点。然而,所得MoS₂单层的横向尺寸相对较大(约50 - 500 nm),仍有释放更多活性位点的巨大潜力。为了进一步提高MoS₂的催化性能,本文引入了一种简便的级联离心辅助液相剥离方法,以制备具有纳米级横向尺寸的富含单层的MoS₂纳米片。所制备的MoS₂在梯度离心下显示出36%的高单层产率和42至9 nm的小平均横向尺寸,所有这些对光催化产氢均表现出优异的催化性能。特别地,平均横向尺寸为9 nm的优化单层MoS₂在420 nm波长下对硫化镉的表观量子效率高达77.2%。这项工作表明,通过协同剥离和横向尺寸工程,由于活性位点密度增加和电荷扩散距离缩短,MoS₂的催化性能可得到显著增强,为基于过渡金属二硫属化物的材料在产氢应用中的设计和制造开辟了一条新途径。