Moeller Kevin D
Washington University in St. Louis , St. Louis , Missouri 63130 , United States.
Chem Rev. 2018 May 9;118(9):4817-4833. doi: 10.1021/acs.chemrev.7b00656. Epub 2018 Mar 2.
While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.
对于不熟悉该技术的化学家来说,有机电化学可能看起来大不相同,但这些反应本质上是有机反应。因此,它们是利用在开发任何其他有机反应时所采用的相同物理有机化学原理来开发和优化的。当然,引发反应的电子转移可能需要对这些原理考虑一些新的“问题”,但相对于操纵该电子转移下游形成的反应中间体可用途径所需的更传统方法,这些考虑通常是微不足道的。在本综述中,我们使用三个截然不同的合成挑战——自由基阳离子的生成与捕获、微电极阵列上的位点选择性反应的开发以及成对电解中电流的优化——来说明这一点。