Suppr超能文献

裂解多糖单加氧酶如何结合结晶几丁质。

How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin.

作者信息

Bissaro Bastien, Isaksen Ingvild, Vaaje-Kolstad Gustav, Eijsink Vincent G H, Røhr Åsmund K

机构信息

Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway.

出版信息

Biochemistry. 2018 Mar 27;57(12):1893-1906. doi: 10.1021/acs.biochem.8b00138. Epub 2018 Mar 14.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are major players in biomass conversion, both in Nature and in the biorefining industry. How the monocopper LPMO active site is positioned relative to the crystalline substrate surface to catalyze powerful, but potentially self-destructive, oxidative chemistry is one of the major questions in the field. We have adopted a multidisciplinary approach, combining biochemical, spectroscopic, and molecular modeling methods to study chitin binding by the well-studied LPMO from Serratia marcescens SmAA10A (or CBP21). The orientation of the enzyme on a single-chain substrate was determined by analyzing enzyme cutting patterns. Building on this analysis, molecular dynamics (MD) simulations were performed to study interactions between the LPMO and three different surface topologies of crystalline chitin. The resulting atomistic models showed that most enzyme-substrate interactions involve the polysaccharide chain that is to be cleaved. The models also revealed a constrained active site geometry as well as a tunnel connecting the bulk solvent to the copper site, through which only small molecules such as HO, O, and HO can diffuse. Furthermore, MD simulations, quantum mechanics/molecular mechanics calculations, and electron paramagnetic resonance spectroscopy demonstrate that rearrangement of Cu-coordinating water molecules is necessary when binding the substrate and also provide a rationale for the experimentally observed C1 oxidative regiospecificity of SmAA10A. This study provides a first, experimentally supported, atomistic view of the interactions between an LPMO and crystalline chitin. The confinement of the catalytic center is likely crucially important for controlling the oxidative chemistry performed by LPMOs and will help guide future mechanistic studies.

摘要

裂解多糖单加氧酶(LPMOs)无论是在自然界还是生物精炼工业中,都是生物质转化的主要参与者。单铜LPMO活性位点相对于晶体底物表面是如何定位的,以催化强大但可能具有自我破坏性的氧化化学反应,这是该领域的主要问题之一。我们采用了多学科方法,结合生化、光谱和分子建模方法,来研究粘质沙雷氏菌SmAA10A(或CBP21)中经过充分研究的LPMO与几丁质的结合情况。通过分析酶切模式确定了酶在单链底物上的取向。在此分析的基础上,进行了分子动力学(MD)模拟,以研究LPMO与晶体几丁质的三种不同表面拓扑结构之间的相互作用。所得的原子模型表明,大多数酶-底物相互作用涉及待切割的多糖链。这些模型还揭示了活性位点几何结构受到限制,以及存在一条将大量溶剂与铜位点相连的通道,只有诸如HO、O和HO等小分子能够通过该通道扩散。此外,MD模拟、量子力学/分子力学计算和电子顺磁共振光谱表明,在结合底物时,铜配位水分子的重排是必要的,并且还为实验观察到的SmAA10A的C1氧化区域特异性提供了理论依据。这项研究首次提供了LPMO与晶体几丁质之间相互作用的、有实验支持的原子层面观点。催化中心的限制对于控制LPMOs进行的氧化化学反应可能至关重要,并将有助于指导未来的机理研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验