Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19178-19189. doi: 10.1073/pnas.2004277117. Epub 2020 Jul 28.
Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of -LPMO10A from , along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and N-HYSCORE spectroscopy study on the uniformly isotope-labeled Cu(II)-bound N-LPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x-y) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O activation in chitin-active AA10 LPMOs.
溶细胞多糖单加氧酶(LPMOs)具有独特的激活分子氧的能力,随后可以氧化切割糖苷键。为了深入了解这些在工业上重要的酶的作用模式,我们进行了一项综合的 NMR/电子顺磁共振(EPR)研究,详细研究了 AA10 LPMO-底物相互作用的各个方面。我们使用 NMR 光谱阐明了来自 的 -LPMO10A 的溶液相结构,以及 Cu(I)-LPMO 的溶液相结构特征,结果表明金属的存在对整体蛋白质结构的影响很小。此外,我们还使用顺磁弛豫增强(PRE)通过 NMR 光谱对 Cu(II)-LPMO 进行了表征。此外,通过对均匀同位素标记的 Cu(II)结合的 N-LPMO10A 及其天然丰度同位素进行多频连续波(CW)-EPR 和 N-HYSCORE 光谱研究,确定了 LPMO 的铜自旋哈密顿参数,这显著提高了准确性。数据表明,在结合底物时,Cu(II)自旋哈密顿参数会发生很大变化。这些变化源于铜配位球从五配位扭曲的四方锥转变为四配位近正方形平面,从而导致配位球发生重新排列。金属-配体的共价性也略有降低,同时单占据分子轨道(SOMO)的 d(x-y)特征/能量增加,我们从密度泛函理论(DFT)计算中提出,这使铜活性位点有利于形成稳定的 Cu-O 中间物。这种在添加几丁质时轨道特征的转变为理解几丁质活性 AA10 LPMO 中底物结合与 O 活化的偶联提供了基础。