Dept. of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom.
Dept. of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom.
Neuroimage. 2018 Jun;173:311-321. doi: 10.1016/j.neuroimage.2018.02.056. Epub 2018 Feb 27.
Imaging ictal and interictal activity with Electrical Impedance Tomography (EIT) using intracranial electrode mats has been demonstrated in animal models of epilepsy. In human epilepsy subjects undergoing presurgical evaluation, depth electrodes are often preferred. The purpose of this work was to evaluate the feasibility of using EIT to localise epileptogenic areas with intracranial electrodes in humans. The accuracy of localisation of the ictal onset zone was evaluated in computer simulations using 9M element FEM models derived from three subjects. 5 mm radius perturbations imitating a single seizure onset event were placed in several locations forming two groups: under depth electrode coverage and in the contralateral hemisphere. Simulations were made for impedance changes of 1% expected for neuronal depolarisation over milliseconds and 10% for cell swelling over seconds. Reconstructions were compared with EEG source modelling for a radially orientated dipole with respect to the closest EEG recording contact. The best accuracy of EIT was obtained using all depth and 32 scalp electrodes, greater than the equivalent accuracy with EEG inverse source modelling. The localisation error was 5.2 ± 1.8, 4.3 ± 0 and 46.2 ± 25.8 mm for perturbations within the volume enclosed by depth electrodes and 29.6 ± 38.7, 26.1 ± 36.2, 54.0 ± 26.2 mm for those without (EIT 1%, 10% change, EEG source modelling, n = 15 in 3 subjects, p < 0.01). As EIT was insensitive to source dipole orientation, all 15 perturbations within the volume enclosed by depth electrodes were localised, whereas the standard clinical method of visual inspection of EEG voltages, only localised 8 out of 15 cases. This suggests that adding EIT to SEEG measurements could be beneficial in localising the onset of seizures.
使用颅内电极垫的电阻抗断层成像(EIT)对癫痫动物模型中的发作期和发作间期活动进行了成像。在接受术前评估的人类癫痫患者中,通常更喜欢使用深部电极。这项工作的目的是评估使用 EIT 定位人类颅内电极癫痫灶的可行性。使用源自三个受试者的 9M 元素有限元模型(FEM)在计算机模拟中评估了发作起始区的定位准确性。在几个位置放置了半径为 5mm 的扰动,模拟单个发作起始事件,形成两个组:在深部电极覆盖下和对侧半球。模拟了神经元去极化毫秒内预期为 1%的阻抗变化和细胞肿胀秒内预期为 10%的阻抗变化。重建结果与径向偶极子的 EEG 源模型进行了比较,相对于最近的 EEG 记录接触点。使用所有深部和 32 个头皮电极获得了 EIT 的最佳准确性,优于 EEG 逆源模型的等效准确性。在深部电极包围的体积内的扰动的 EIT 定位误差为 5.2±1.8mm、4.3±0mm 和 46.2±25.8mm,而在没有深部电极的情况下的 EIT 定位误差为 29.6±38.7mm、26.1±36.2mm 和 54.0±26.2mm(EIT 1%、10%变化、EEG 源模型,n=3 名受试者中的 15 名,p<0.01)。由于 EIT 对源偶极子方向不敏感,所有在深部电极包围的体积内的 15 个扰动均被定位,而标准的 EEG 电压视觉检查临床方法仅定位了 15 例中的 8 例。这表明在 SEEG 测量中添加 EIT 可能有助于定位发作的起始。