Centre for Developmental Neurobiology, King's College London, London, United Kingdom.
King's-NUS Joint Studentship Program, King's College London, London, United Kingdom.
Elife. 2018 Mar 5;7:e31659. doi: 10.7554/eLife.31659.
Building arborisations of the right size and shape is fundamental for neural network function. Live imaging in vertebrate brains strongly suggests that nascent synapses are critical for branch growth during development. The molecular mechanisms underlying this are largely unknown. Here we present a novel system in for studying the development of complex arborisations live, in vivo during metamorphosis. In growing arborisations we see branch dynamics and localisations of presynaptic proteins very similar to the 'synaptotropic growth' described in fish/frogs. These accumulations of presynaptic proteins do not appear to be presynaptic release sites and are not paired with neurotransmitter receptors. Knockdowns of either evoked or spontaneous neurotransmission do not impact arbor growth. Instead, we find that axonal branch growth is regulated by dynamic, focal localisations of Neurexin and Neuroligin. These adhesion complexes provide stability for filopodia by a 'stick-and-grow' based mechanism wholly independent of synaptic activity.
构建大小和形状合适的树突是神经网络功能的基础。脊椎动物大脑的实时成像强烈表明,新生突触对于发育过程中的分支生长至关重要。但其背后的分子机制在很大程度上仍是未知的。在这里,我们提出了一种新的系统,用于在变态过程中活体研究复杂树突的发育。在生长的树突中,我们观察到类似于在鱼类/青蛙中描述的“突触生长”的分支动力学和突触前蛋白的局部化。这些突触前蛋白的积累似乎不是突触前释放位点,也不与神经递质受体配对。诱发或自发神经传递的敲低都不会影响树突的生长。相反,我们发现轴突分支的生长受到神经连接蛋白和神经黏附素的动态、局域化的调节。这些粘附复合物通过一种完全独立于突触活动的“黏附-生长”机制为丝状伪足提供稳定性。