Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States of America.
PLoS Comput Biol. 2018 Mar 5;14(3):e1006031. doi: 10.1371/journal.pcbi.1006031. eCollection 2018 Mar.
Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10-1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding.
细胞分裂、内吞作用和病毒出芽,如果没有蛋白质复合物在膜上的定位和组装,就无法发挥作用。然而,人们没有充分认识到的是,通过在膜上定位,蛋白质在一个有效增加浓度的缩小空间中进行搜索。在这里,我们推导出了一个准确而实用的分析理论,以定量量化这种在调节膜上蛋白质组装中的维度降低的重要性。我们定义了一个简单的度量标准,即有效平衡常数,该常数允许定量比较有膜和无膜存在时的蛋白质-蛋白质相互作用。为了测试膜定位对驱动蛋白质组装的重要性,我们收集了 46 个人类和酵母细胞中 37 种靶向膜的蛋白质之间的蛋白质-蛋白质和蛋白质-脂质亲和力、蛋白质和脂质浓度以及体积-表面积比。我们发现,在人类和酵母细胞中,网格蛋白介导的内吞作用涉及的许多蛋白质-蛋白质相互作用由于膜定位,有效蛋白质-蛋白质亲和力可以经历巨大的增加(10-1000 倍)。因此,结合伴侣的定位引发了强大的蛋白质复合物化,这表明它可以在控制内吞作用蛋白外壳形成的时间方面发挥重要作用。我们的分析表明,其他几种参与各种细胞器膜重塑的蛋白质也具有类似的潜力来利用定位。该理论突出了磷酸肌醇脂质浓度、体积-表面积比以及 3D 与 2D 平衡常数比在触发(或阻止)膜上组成型组装方面的主要作用。我们的简单模型为解释或设计受膜结合影响的蛋白质复合物化的体外实验提供了一个新的定量框架。