Soubias Olivier, Foley Samuel L, Jian Xiaoying, Jackson Rebekah A, Zhang Yue, Rosenberg Eric M, Li Jess, Heinrich Frank, Johnson Margaret E, Sodt Alexander J, Randazzo Paul A, Byrd R Andrew
Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA.
bioRxiv. 2024 Dec 21:2024.12.20.629688. doi: 10.1101/2024.12.20.629688.
ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface. Our results support a new conceptual model in which the PH domain contributes to efficient catalysis not only by membrane recruitment but by acting as a critical component of the catalytic interface, binding Arf·GTP and allosterically driving it towards the catalytic transition state. We discuss the biological implications of these results and how they may apply more broadly to poorly understood membrane-dependent regulatory mechanisms controlling catalysis of the ArfGAP superfamily as well as other peripheral membrane enzymes.
ASAP1是一种多结构域的Arf GTP酶激活蛋白(ArfGAP),它催化小GTP酶Arf1上的GTP水解,并与癌症进展有关。ASAP1的PH结构域将其活性提高了超过7个数量级,但其潜在机制仍知之甚少。在这里,我们结合核磁共振(NMR)、分子动力学(MD)模拟和功能数据的数学建模,构建了膜表面上Arf1与ASAP1 PH结构域复合物的全面结构 - 机制模型。我们的结果支持一个新的概念模型,其中PH结构域不仅通过膜募集,而且通过作为催化界面的关键组分,结合Arf·GTP并变构驱动其向催化过渡态,从而有助于高效催化。我们讨论了这些结果的生物学意义,以及它们如何更广泛地应用于对控制ArfGAP超家族以及其他外周膜酶催化作用的膜依赖性调节机制了解甚少的情况。