Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
PhoenixNMR, 4921 Eagle Lake Drive, Fort Collins, CO, USA.
Solid State Nucl Magn Reson. 2018 Jul;91:15-20. doi: 10.1016/j.ssnmr.2018.02.001. Epub 2018 Feb 19.
Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates.
短寿命金属过氧基配合物的电子和结构性质是许多酶反应中的关键中间体,但它们的性质还不完全清楚。尽管在各种酶中都检测到了过氧基配合物,但由于它们的瞬态性质,其催化性质仍然难以捉摸,因此很难通过光谱学进行研究。我们将 O 固体核磁共振和密度泛函理论(DFT)相结合,直接检测和表征了仿生非血红素钒卤过氧化物酶中间体的生物无机 V(V) 配合物中的过氧基配体。通过固体核磁共振光谱测量的 O 化学位移和四极张量探测了过氧基配体的电子结构及其与金属的相互作用。DFT 分析揭示了由于金属轨道对配体的磁屏蔽作用而产生的非常大的化学位移各向异性。该结果说明了综合方法在研究酶反应中间体中氧中心的应用。