Vernieres Jerome, Steinhauer Stephan, Zhao Junlei, Grammatikopoulos Panagiotis, Ferrando Riccardo, Nordlund Kai, Djurabekova Flyura, Sowwan Mukhles
Nanoparticles by Design Unit Okinawa Institute of Science and Technology (OIST) Graduate University 1919-1 Tancha Onna-son 904-2151 Okinawa Japan.
Department of Physics and Helsinki Institute of Physics University of Helsinki P.O. Box 43 FI-00014 Helsinki Finland.
Adv Sci (Weinh). 2019 May 2;6(13):1900447. doi: 10.1002/advs.201900447. eCollection 2019 Jul 3.
A key challenge in nanotechnology is the rational design of multicomponent materials that beat the properties of their elemental counterparts. At the same time, when considering the material composition of such hybrid nanostructures and the fabrication process to obtain them, one should favor the use of nontoxic, abundant elements in view of the limited availability of critical metals and sustainability. Cluster beam deposition offers a solvent- and, therefore, effluent-free physical synthesis method to achieve nanomaterials with tailored characteristics. However, the simultaneous control of size, shape, and elemental distribution within a single nanoparticle in a small-size regime (sub-10 nm) is still a major challenge, equally limiting physical and chemical approaches. Here, a single-step nanoparticle fabrication method based on magnetron-sputtering inert-gas condensation is reported, which relies on selective wetting of specific surface sites on precondensed iron nanocubes by gold atoms. Using a newly developed Fe-Au interatomic potential, the growth mechanism is decomposed into a multistage model implemented in a molecular dynamics simulation framework. The importance of growth kinetics is emphasized through differences between structures obtained either experimentally or computationally, and thermodynamically favorable configurations determined via global optimization techniques. These results provide a roadmap for engineering complex nanoalloys toward targeted applications.
纳米技术的一个关键挑战是合理设计多组分材料,使其性能优于其组成元素的对应物。同时,考虑到此类混合纳米结构的材料组成以及获得它们的制造过程,鉴于关键金属的可用性有限和可持续性,应优先使用无毒、丰富的元素。团簇束沉积提供了一种无溶剂、因此无废水的物理合成方法,以实现具有定制特性的纳米材料。然而,在小尺寸范围(小于10纳米)内同时控制单个纳米颗粒的尺寸、形状和元素分布仍然是一个重大挑战,这同样限制了物理和化学方法。在此,报道了一种基于磁控溅射惰性气体冷凝的单步纳米颗粒制造方法,该方法依赖于金原子对预冷凝铁纳米立方体上特定表面位点的选择性润湿。使用新开发的铁-金原子间势,将生长机制分解为在分子动力学模拟框架中实现的多阶段模型。通过实验或计算获得的结构之间的差异以及通过全局优化技术确定的热力学有利构型,强调了生长动力学的重要性。这些结果为将复杂纳米合金工程化以用于目标应用提供了路线图。