Ronen Jonathan, Akalin Altuna
Scientific Bioinformatics Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
F1000Res. 2018 Jan 3;7:8. doi: 10.12688/f1000research.13511.3. eCollection 2018.
Single cell RNA-seq (scRNA-seq) experiments suffer from a range of characteristic technical biases, such as dropouts (zero or near zero counts) and high variance. Current analysis methods rely on imputing missing values by various means of local averaging or regression, often amplifying biases inherent in the data. We present netSmooth, a network-diffusion based method that uses priors for the covariance structure of gene expression profiles on scRNA-seq experiments in order to smooth expression values. We demonstrate that netSmooth improves clustering results of scRNA-seq experiments from distinct cell populations, time-course experiments, and cancer genomics. We provide an R package for our method, available at: https://github.com/BIMSBbioinfo/netSmooth.
单细胞RNA测序(scRNA-seq)实验存在一系列典型的技术偏差,如数据丢失(零计数或接近零计数)和高方差。当前的分析方法依赖于通过各种局部平均或回归方法来估算缺失值,这往往会放大数据中固有的偏差。我们提出了netSmooth,这是一种基于网络扩散的方法,它利用scRNA-seq实验中基因表达谱协方差结构的先验信息来平滑表达值。我们证明netSmooth改善了来自不同细胞群体、时间进程实验和癌症基因组学的scRNA-seq实验的聚类结果。我们为我们的方法提供了一个R包,可在以下网址获取:https://github.com/BIMSBbioinfo/netSmooth。