Department of Animal Science, University of California Davis, California 95616
Department of Animal Science, Adnan Menderes University, 9100 Aydin, Turkey.
Genetics. 2018 May;209(1):89-103. doi: 10.1534/genetics.118.300650. Epub 2018 Mar 7.
Bayesian multiple-regression methods incorporating different mixture priors for marker effects are used widely in genomic prediction. Improvement in prediction accuracies from using those methods, such as BayesB, BayesC, and BayesC, have been shown in single-trait analyses with both simulated and real data. These methods have been extended to multi-trait analyses, but only under the restrictive assumption that a locus simultaneously affects all the traits or none of them. This assumption is not biologically meaningful, especially in multi-trait analyses involving many traits. In this paper, we develop and implement a more general multi-trait BayesC[Formula: see text] and BayesB methods allowing a broader range of mixture priors. Our methods allow a locus to affect any combination of traits, , in a 5-trait analysis, the "restrictive" model only allows two situations, whereas ours allow all 32 situations. Further, we compare our methods to single-trait methods and the "restrictive" multi-trait formulation using real and simulated data. In the real data analysis, higher prediction accuracies were observed from both our new broad-based multi-trait methods and the "restrictive" formulation. The broad-based and restrictive multi-trait methods showed similar prediction accuracies. In the simulated data analysis, higher prediction accuracies to the "restrictive" method were observed from our general multi-trait methods for intermediate training population size. The software tool JWAS offers open-source routines to perform these analyses.
贝叶斯多元回归方法结合了不同的混合先验用于标记效应,在基因组预测中被广泛应用。在单性状分析中,使用这些方法(如 BayesB、BayesC 和 BayesC)已经显示出了预测准确性的提高,这些方法已经扩展到多性状分析中,但仅在一个假设下,即一个位点同时影响所有性状或不影响任何性状。这个假设在生物学上没有意义,特别是在涉及多个性状的多性状分析中。在本文中,我们开发并实现了一种更通用的多性状 BayesC[Formula: see text]和 BayesB 方法,允许更广泛的混合先验。我们的方法允许一个位点影响任何组合的性状,在 5 个性状的分析中,“限制”模型仅允许两种情况,而我们的方法允许所有 32 种情况。此外,我们使用真实和模拟数据将我们的方法与单性状方法和“限制”多性状公式进行了比较。在真实数据分析中,从我们的新的基于广泛的多性状方法和“限制”公式中观察到了更高的预测准确性。基于广泛的和限制的多性状方法显示出相似的预测准确性。在模拟数据分析中,对于中等训练人口规模,我们的通用多性状方法从“限制”方法中观察到了更高的预测准确性。JWAS 软件工具提供了执行这些分析的开源例程。