Suppr超能文献

基因组选择方法在火炬松(Pinus taeda L.)标准数据集上的准确性。

Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.).

机构信息

Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32611, USA.

出版信息

Genetics. 2012 Apr;190(4):1503-10. doi: 10.1534/genetics.111.137026. Epub 2012 Jan 23.

Abstract

Genomic selection can increase genetic gain per generation through early selection. Genomic selection is expected to be particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species. Alternative approaches to genomic selection prediction models may perform differently for traits with distinct genetic properties. Here the performance of four different original methods of genomic selection that differ with respect to assumptions regarding distribution of marker effects, including (i) ridge regression-best linear unbiased prediction (RR-BLUP), (ii) Bayes A, (iii) Bayes Cπ, and (iv) Bayesian LASSO are presented. In addition, a modified RR-BLUP (RR-BLUP B) that utilizes a selected subset of markers was evaluated. The accuracy of these methods was compared across 17 traits with distinct heritabilities and genetic architectures, including growth, development, and disease-resistance properties, measured in a Pinus taeda (loblolly pine) training population of 951 individuals genotyped with 4853 SNPs. The predictive ability of the methods was evaluated using a 10-fold, cross-validation approach, and differed only marginally for most method/trait combinations. Interestingly, for fusiform rust disease-resistance traits, Bayes Cπ, Bayes A, and RR-BLUB B had higher predictive ability than RR-BLUP and Bayesian LASSO. Fusiform rust is controlled by few genes of large effect. A limitation of RR-BLUP is the assumption of equal contribution of all markers to the observed variation. However, RR-BLUP B performed equally well as the Bayesian approaches.The genotypic and phenotypic data used in this study are publically available for comparative analysis of genomic selection prediction models.

摘要

基因组选择可以通过早期选择提高每一代的遗传增益。基因组选择预计对于表型成本高且在长寿命物种生命周期后期表达的性状特别有价值。基因组选择预测模型的替代方法对于具有不同遗传特性的性状可能表现不同。在这里,介绍了四种不同的原始基因组选择方法,这些方法在标记效应分布的假设方面有所不同,包括 (i) 岭回归-最佳线性无偏预测 (RR-BLUP)、(ii) Bayes A、(iii) Bayes Cπ 和 (iv) 贝叶斯 LASSO。此外,还评估了一种利用选定子集标记的改进 RR-BLUP(RR-BLUP B)。这些方法的准确性在 17 个具有不同遗传力和遗传结构的性状中进行了比较,包括在一个由 951 个个体组成的 Pinus taeda(火炬松)训练群体中测量的生长、发育和抗病性特性,这些个体的基因型由 4853 个 SNP 组成。使用 10 折交叉验证方法评估了这些方法的预测能力,大多数方法/性状组合的预测能力仅略有差异。有趣的是,对于丛枝锈病抗性性状,Bayes Cπ、Bayes A 和 RR-BLUB B 的预测能力高于 RR-BLUP 和贝叶斯 LASSO。丛枝锈病由少数大效应基因控制。RR-BLUP 的一个限制是假设所有标记对观察到的变异都有同等贡献。然而,RR-BLUP B 的表现与贝叶斯方法一样好。本研究中使用的基因型和表型数据可公开用于基因组选择预测模型的比较分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验