Suppr超能文献

利用机器学习进行化学生殖毒性的计算预测。

In silico prediction of chemical reproductive toxicity using machine learning.

机构信息

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.

出版信息

J Appl Toxicol. 2019 Jun;39(6):844-854. doi: 10.1002/jat.3772. Epub 2019 Jan 27.

Abstract

Reproductive toxicity is an important regulatory endpoint in health hazard assessment. Because the in vivo tests are expensive, time consuming and require a large number of animals, which must be killed, in silico approaches as the alternative strategies have been developed to assess the potential reproductive toxicity (reproductive toxicity) of chemicals. Some prediction models for reproductive toxicity have been developed, but most of them were built only based on one single endpoint such as embryo teratogenicity; therefore, these models may not provide reliable predictions for toxic chemicals with other endpoints, such as sperm reduction or gonadal dysgenesis. Here, a total of 1823 chemicals for reproductive toxicity characterized by multiple endpoints were used to develop structure-activity relationship models by six machine-learning approaches with nine molecular fingerprints. Among the models, MACCSFP-SVM model has the best performance for the external validation set (area under the curve = 0.900, classification accuracy = 0.836). The applicability domain was analyzed, and a rational boundary was found to distinguish inaccurate predictions and accurate predictions. Moreover, several structural alerts for characterizing reproductive toxicity were identified using the information gain combining substructure frequency analysis. Our results would be helpful for the prediction of the reproductive toxicity of chemicals.

摘要

生殖毒性是健康危害评估中的一个重要监管终点。由于体内试验昂贵、耗时且需要大量动物(这些动物必须被杀死),因此已经开发了基于计算机的替代策略来评估化学品的潜在生殖毒性(生殖毒性)。已经开发出了一些生殖毒性的预测模型,但大多数模型仅基于单一终点(如胚胎致畸性)构建;因此,这些模型可能无法为具有其他终点(如精子减少或性腺发育不良)的有毒化学品提供可靠的预测。在这里,使用 1823 种具有多种终点的生殖毒性化学物质,通过六种机器学习方法和九种分子指纹开发了结构-活性关系模型。在这些模型中,MACCSFP-SVM 模型对外部验证集具有最佳性能(曲线下面积=0.900,分类准确率=0.836)。对适用域进行了分析,并找到了一个合理的边界来区分不准确的预测和准确的预测。此外,还使用信息增益结合子结构频率分析确定了用于描述生殖毒性的几个结构警报。我们的研究结果将有助于预测化学物质的生殖毒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验