Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Spain.
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
PLoS Comput Biol. 2024 Jul 11;20(7):e1011642. doi: 10.1371/journal.pcbi.1011642. eCollection 2024 Jul.
The Virtual Epileptic Patient (VEP) refers to a computer-based representation of a patient with epilepsy that combines personalized anatomical data with dynamical models of abnormal brain activities. It is capable of generating spatio-temporal seizure patterns that resemble those recorded with invasive methods such as stereoelectro EEG data, allowing for the evaluation of clinical hypotheses before planning surgery. This study highlights the effectiveness of calibrating VEP models using a global optimization approach. The approach utilizes SaCeSS, a cooperative metaheuristic algorithm capable of parallel computation, to yield high-quality solutions without requiring excessive computational time. Through extensive benchmarking on synthetic data, our proposal successfully solved a set of different configurations of VEP models, demonstrating better scalability and superior performance against other parallel solvers. These results were further enhanced using a Bayesian optimization framework for hyperparameter tuning, with significant gains in terms of both accuracy and computational cost. Additionally, we added a scalable uncertainty quantification phase after model calibration, and used it to assess the variability in estimated parameters across different problems. Overall, this study has the potential to improve the estimation of pathological brain areas in drug-resistant epilepsy, thereby to inform the clinical decision-making process.
虚拟癫痫患者(VEP)是指一种基于计算机的癫痫患者表示方法,它将个性化的解剖数据与异常脑活动的动力学模型相结合。它能够生成类似于使用立体脑电图数据等侵入性方法记录的时空发作模式,从而可以在手术前评估临床假设。本研究强调了使用全局优化方法校准 VEP 模型的有效性。该方法利用 SaCeSS,一种能够进行并行计算的协作元启发式算法,在不要求过多计算时间的情况下生成高质量的解决方案。通过对合成数据的广泛基准测试,我们的提案成功解决了一组不同配置的 VEP 模型,与其他并行求解器相比,表现出更好的可扩展性和更高的性能。通过使用贝叶斯优化框架进行超参数调整,进一步提高了这些结果的准确性和计算成本。此外,我们在模型校准后添加了可扩展的不确定性量化阶段,并使用它来评估不同问题中估计参数的可变性。总的来说,这项研究有可能改善耐药性癫痫中病理性脑区的估计,从而为临床决策过程提供信息。