Suppr超能文献

基于催化活性细菌纳米纤维素的超滤膜。

Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration Membrane.

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.

Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.

出版信息

Small. 2018 Apr;14(15):e1704006. doi: 10.1002/smll.201704006. Epub 2018 Mar 8.

Abstract

Large quantities of highly toxic organic dyes in industrial wastewater is a persistent challenge in wastewater treatment processes. Here, for highly efficient wastewater treatment, a novel membrane based on bacterial nanocellulose (BNC) loaded with graphene oxide (GO) and palladium (Pd) nanoparticles is demonstrated. This Pd/GO/BNC membrane is realized through the in situ incorporation of GO flakes into BNC matrix during its growth followed by the in situ formation of palladium nanoparticles. The Pd/GO/BNC membrane exhibits highly efficient methylene orange (MO) degradation during filtration (up to 99.3% over a wide range of MO concentrations, pH, and multiple cycles of reuse). Multiple contaminants (a cocktail of 4-nitrophenol, methylene blue, and rhodamine 6G) can also be effectively treated by Pd/GO/BNC membrane simultaneously during filtration. Furthermore, the Pd/GO/BNC membrane demonstrates stable flux (33.1 L m h ) under 58 psi over long duration. The novel and robust membrane demonstrated here is highly scalable and holds a great promise for wastewater treatment.

摘要

工业废水中大量的高毒性有机染料是废水处理过程中的一个长期存在的挑战。在这里,为了实现高效的废水处理,我们展示了一种基于负载有氧化石墨烯(GO)和钯(Pd)纳米粒子的细菌纳米纤维素(BNC)的新型膜。这种 Pd/GO/BNC 膜是通过在 BNC 生长过程中将 GO 薄片原位掺入到 BNC 基质中,然后原位形成钯纳米粒子而实现的。Pd/GO/BNC 膜在过滤过程中表现出高效的亚甲基蓝(MO)降解性能(在很宽的 MO 浓度、pH 值和多次重复使用范围内,降解率高达 99.3%)。在过滤过程中,Pd/GO/BNC 膜还可以同时有效地处理多种污染物(4-硝基苯酚、亚甲基蓝和罗丹明 6G 的混合物)。此外,Pd/GO/BNC 膜在 58 psi 下长时间内稳定通量(33.1 L m h )。这里展示的新型、稳健的膜具有高度的可扩展性,为废水处理提供了很大的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验