Suppr超能文献

儿童输入中语法范畴的通用线索:频繁的框架。

A universal cue for grammatical categories in the input to children: Frequent frames.

机构信息

Department of Comparative Linguistics, University of Zurich, Switzerland.

Department of Comparative Linguistics, University of Zurich, Switzerland; Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Germany.

出版信息

Cognition. 2018 Jun;175:131-140. doi: 10.1016/j.cognition.2018.02.005. Epub 2018 Mar 16.

Abstract

How does a child map words to grammatical categories when words are not overtly marked either lexically or prosodically? Recent language acquisition theories have proposed that distributional information encoded in sequences of words or morphemes might play a central role in forming grammatical classes. To test this proposal, we analyze child-directed speech from seven typologically diverse languages to simulate maximum variation in the structures of the world's languages. We ask whether the input to children contains cues for assigning syntactic categories in frequent frames, which are frequently occurring nonadjacent sequences of words or morphemes. In accord with aggregated results from previous studies on individual languages, we find that frequent word frames do not provide a robust distributional pattern for accurately predicting grammatical categories. However, our results show that frames are extremely accurate cues cross-linguistically at the morpheme level. We theorize that the nonadjacent dependency pattern captured by frequent frames is a universal anchor point for learners on the morphological level to detect and categorize grammatical categories. Whether frames also play a role on higher linguistic levels such as words is determined by grammatical features of the individual language.

摘要

当词汇在词汇或韵律上没有明显标记时,儿童如何将词汇映射到语法类别?最近的语言习得理论提出,词汇或词素序列中编码的分布信息可能在形成语法类别中起核心作用。为了检验这一假设,我们分析了来自七种不同类型语言的儿童导向语料,以模拟世界语言结构的最大变化。我们询问儿童输入中是否包含在常见框架中分配句法类别的线索,这些框架是经常出现的非相邻词或词素序列。与之前对个别语言的研究的综合结果一致,我们发现,常见的词框架并不能为准确预测语法类别提供强大的分布模式。然而,我们的结果表明,在词素层面上,框架是非常准确的跨语言线索。我们推断,频繁框架所捕捉的非相邻依赖模式是学习者在形态水平上检测和分类语法类别的通用锚点。框架是否也在单词等更高的语言层次上发挥作用,取决于个别语言的语法特征。

相似文献

引用本文的文献

2
Corpus-based typology: applications, challenges and some solutions.基于语料库的类型学:应用、挑战及一些解决方案。
Linguist Typol. 2022 May 25;26(1):129-160. doi: 10.1515/lingty-2020-0118. Epub 2021 Mar 30.
4
The function and evolution of child-directed communication.儿童导向型交流的功能与演变。
PLoS Biol. 2022 May 6;20(5):e3001630. doi: 10.1371/journal.pbio.3001630. eCollection 2022 May.
8
Nouns slow down speech across structurally and culturally diverse languages.名词会减缓各种结构和文化差异语言的语速。
Proc Natl Acad Sci U S A. 2018 May 29;115(22):5720-5725. doi: 10.1073/pnas.1800708115. Epub 2018 May 14.

本文引用的文献

1
The Developmental Trajectory of Nonadjacent Dependency Learning.非相邻依赖学习的发展轨迹
Infancy. 2005 Mar;7(2):183-206. doi: 10.1207/s15327078in0702_4. Epub 2005 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验