Vattikuti S V Prabhakar, Police Anil Kumar Reddy, Shim Jaesool, Byon Chan
School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Sci Rep. 2018 Mar 8;8(1):4194. doi: 10.1038/s41598-018-22622-0.
Core-shell heterostructures have attracted considerable attention owing to their unique properties and broad range of applications in lithium ion batteries, supercapacitors, and catalysis. Conversely, the effective synthesis of BiS nanorod core@ amorphous carbon shell heterostructure remains an important challenge. In this study, C@BiS core-shell heterostructures with enhanced supercapacitor performance were synthesized via sacrificial- template-free one-pot-synthesis method. The highest specific capacities of the C@BiS core shell was 333.43 F g at a current density of 1 A g. Core-shell-structured C@BiS exhibits 1.86 times higher photocatalytic H production than the pristine BiS under simulated solar light irradiation. This core-shell feature of C@BiS provides efficient charge separation and transfer owing to the formed heterojunction and a short radial transfer path, thus efficiently diminishing the charge recombination; it also facilitates plenty of active sites for the hydrogen evolution reaction owing to its mesoporous nature. These outcomes will open opportunities for developing low-cost and noble-metal-free efficient electrode materials for water splitting and supercapacitor applications.
核壳异质结构因其独特的性质以及在锂离子电池、超级电容器和催化领域的广泛应用而备受关注。相反,BiS纳米棒核@非晶碳壳异质结构的有效合成仍然是一个重大挑战。在本研究中,通过无牺牲模板的一锅合成法合成了具有增强超级电容器性能的C@BiS核壳异质结构。在1 A g的电流密度下,C@BiS核壳的最高比电容为333.43 F g。在模拟太阳光照射下,核壳结构的C@BiS的光催化产氢量比原始BiS高1.86倍。C@BiS的这种核壳结构由于形成的异质结和较短的径向传输路径,提供了有效的电荷分离和转移,从而有效地减少了电荷复合;由于其介孔性质,它还为析氢反应提供了大量的活性位点。这些成果将为开发用于水分解和超级电容器应用的低成本、无贵金属的高效电极材料提供机会。