Simões Tiago, Lopes Daniel, Dias Sérgio, Fernandes Francisco, Pereira João, Jorge Joaquim, Bajaj Chandrajit, Gomes Abel
Instituto de Telecomunicações, Portugal.
Universidade da Beira Interior, Portugal.
Comput Graph Forum. 2017 Dec;36(8):643-683. doi: 10.1111/cgf.13158. Epub 2017 Jun 1.
Detecting and analyzing protein cavities provides significant information about active sites for biological processes (e.g., protein-protein or protein-ligand binding) in molecular graphics and modeling. Using the three-dimensional structure of a given protein (i.e., atom types and their locations in 3D) as retrieved from a PDB (Protein Data Bank) file, it is now computationally viable to determine a description of these cavities. Such cavities correspond to pockets, clefts, invaginations, voids, tunnels, channels, and grooves on the surface of a given protein. In this work, we survey the literature on protein cavity computation and classify algorithmic approaches into three categories: evolution-based, energy-based, and geometry-based. Our survey focuses on geometric algorithms, whose taxonomy is extended to include not only sphere-, grid-, and tessellation-based methods, but also surface-based, hybrid geometric, consensus, and time-varying methods. Finally, we detail those techniques that have been customized for GPU (Graphics Processing Unit) computing.
在分子图形学和建模中,检测和分析蛋白质腔可为生物过程(如蛋白质 - 蛋白质或蛋白质 - 配体结合)的活性位点提供重要信息。利用从蛋白质数据库(PDB)文件中检索到的给定蛋白质的三维结构(即原子类型及其在三维空间中的位置),现在通过计算确定这些腔的描述是可行的。此类腔对应于给定蛋白质表面的口袋、裂缝、凹陷、空隙、隧道、通道和凹槽。在这项工作中,我们调研了蛋白质腔计算的相关文献,并将算法方法分为三类:基于进化的、基于能量的和基于几何的。我们的调研重点是几何算法,其分类不仅扩展到包括基于球体、网格和镶嵌的方法,还包括基于表面、混合几何、共识和时变方法。最后,我们详细介绍了那些为图形处理单元(GPU)计算定制的技术。