Suppr超能文献

超越遗传力:提高影像遗传学的可发现性。

Beyond heritability: improving discoverability in imaging genetics.

机构信息

Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.

NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

出版信息

Hum Mol Genet. 2018 May 1;27(R1):R22-R28. doi: 10.1093/hmg/ddy082.

Abstract

Structural neuroimaging measures based on magnetic resonance imaging have been at the forefront of imaging genetics. Global efforts to ensure homogeneity of measurements across study sites have enabled large-scale imaging genetic projects, accumulating nearly 50K samples for genome-wide association studies (GWAS). However, not many novel genetic variants have been identified by these GWAS, despite the high heritability of structural neuroimaging measures. Here, we discuss the limitations of using heritability as a guidance for assessing statistical power of GWAS, and highlight the importance of discoverability-which is the power to detect genetic variants for a given phenotype depending on its unique genomic architecture and GWAS sample size. Further, we present newly developed methods that boost genetic discovery in imaging genetics. By redefining imaging measures independent of traditional anatomical conventions, it is possible to improve discoverability, enabling identification of more genetic effects. Moreover, by leveraging enrichment priors from genomic annotations and independent GWAS of pleiotropic traits, we can better characterize effect size distributions, and identify reliable and replicable loci associated with structural neuroimaging measures. Statistical tools leveraging novel insights into the genetic discoverability of human traits, promises to accelerate the identification of genetic underpinnings underlying brain structural variation.

摘要

基于磁共振成像的结构神经影像学测量一直处于成像遗传学的前沿。全球范围内努力确保研究地点测量的同质性,使大规模成像遗传学项目得以实现,积累了近 50,000 个样本进行全基因组关联研究 (GWAS)。然而,尽管结构神经影像学测量具有很高的遗传性,但通过这些 GWAS 并未发现很多新的遗传变异。在这里,我们讨论了将遗传性用作评估 GWAS 统计功效的指导的局限性,并强调了可发现性的重要性——这是根据特定表型的独特基因组结构和 GWAS 样本量检测遗传变异的能力。此外,我们提出了新开发的方法来增强成像遗传学中的遗传发现。通过重新定义独立于传统解剖学惯例的成像测量,有可能提高可发现性,从而能够识别更多的遗传效应。此外,通过利用来自基因组注释和多效性性状独立 GWAS 的富集先验知识,我们可以更好地描述效应大小分布,并识别与结构神经影像学测量相关的可靠且可重复的位点。利用对人类特征遗传可发现性的新见解的统计工具,有望加速确定大脑结构变异的遗传基础。

相似文献

7
Genetics and brain morphology.遗传学与大脑形态。
Neuropsychol Rev. 2015 Mar;25(1):63-96. doi: 10.1007/s11065-015-9281-1. Epub 2015 Mar 14.

引用本文的文献

7
Imaging Genetics Towards a Refined Diagnosis of Schizophrenia.影像遗传学助力精神分裂症的精准诊断
Front Psychiatry. 2019 Jul 12;10:494. doi: 10.3389/fpsyt.2019.00494. eCollection 2019.
9
Genetic Markers of ADHD-Related Variations in Intracranial Volume.ADHD 相关颅内容积变化的遗传标志物。
Am J Psychiatry. 2019 Mar 1;176(3):228-238. doi: 10.1176/appi.ajp.2018.18020149.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验