Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164.
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352.
Plant Physiol. 2018 May;177(1):115-131. doi: 10.1104/pp.17.01766. Epub 2018 Mar 9.
Arogenate dehydratase (ADT) catalyzes the final step of phenylalanine (Phe) biosynthesis. Previous work showed that ADT-deficient Arabidopsis () mutants had significantly reduced lignin contents, with stronger reductions in lines that had deficiencies in more ADT isoforms. Here, by analyzing Arabidopsis mutants using our phenomics facility and ultra-performance liquid chromatography-mass spectrometry-based metabolomics, we describe the effects of the modulation of ADT on photosynthetic parameters and secondary metabolism. Our data indicate that a reduced carbon flux into Phe biosynthesis in mutants impairs the consumption of photosynthetically produced ATP, leading to an increased ATP/ADP ratio, the overaccumulation of transitory starch, and lower electron transport rates. The effect on electron transport rates is caused by an increase in proton motive force across the thylakoid membrane that down-regulates photosystem II activity by the high-energy quenching mechanism. Furthermore, quantitation of secondary metabolites in mutants revealed reduced flavonoid, phenylpropanoid, lignan, and glucosinolate contents, including glucosinolates that are not derived from aromatic amino acids, and significantly increased contents of putative galactolipids and apocarotenoids. Additionally, we used real-time atmospheric monitoring mass spectrometry to compare respiration and carbon fixation rates between the wild type and , our most extreme knockout mutant, which revealed no significant difference in both night- and day-adapted plants. Overall, these data reveal the profound effects of altered ADT activity and Phe metabolism on secondary metabolites and photosynthesis with implications for plant improvement.
精氨酸脱水酶(ADT)催化苯丙氨酸(Phe)生物合成的最后一步。以前的工作表明,ADT 缺陷型拟南芥()突变体的木质素含量显著降低,而在缺乏更多 ADT 同工型的系中,木质素的降低更为明显。在这里,我们通过使用我们的表型分析设施和基于超高效液相色谱-质谱的代谢组学分析拟南芥突变体,描述了 ADT 对光合作用参数和次生代谢物的调节作用。我们的数据表明,在突变体中,进入 Phe 生物合成的碳通量减少会损害光合作用产生的 ATP 的消耗,导致 ATP/ADP 比值增加、暂态淀粉过度积累和电子传递速率降低。对电子传递速率的影响是由于类囊体膜跨膜质子动力的增加,通过高能猝灭机制下调光系统 II 的活性。此外,对突变体中次生代谢物的定量分析显示,类黄酮、苯丙烷、木脂素和硫代葡萄糖苷的含量降低,包括不来源于芳香族氨基酸的硫代葡萄糖苷,以及假定的半乳糖脂和类胡萝卜素的含量显著增加。此外,我们使用实时大气监测质谱比较了野生型和我们最极端的 ADT 敲除突变体之间的呼吸和碳固定速率,结果表明在适应昼夜的植物中没有显著差异。总的来说,这些数据揭示了改变的 ADT 活性和 Phe 代谢对次生代谢物和光合作用的深远影响,对植物改良具有重要意义。