Suppr超能文献

相似文献

1
Reduced Arogenate Dehydratase Expression: Ramifications for Photosynthesis and Metabolism.
Plant Physiol. 2018 May;177(1):115-131. doi: 10.1104/pp.17.01766. Epub 2018 Mar 9.
2
Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.
Mol Plant. 2016 Dec 5;9(12):1609-1619. doi: 10.1016/j.molp.2016.09.010. Epub 2016 Oct 5.
4
Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins.
J Biol Chem. 2012 Mar 30;287(14):11446-59. doi: 10.1074/jbc.M111.322164. Epub 2012 Feb 6.
5
The Arogenate Dehydratase ADT2 is Essential for Seed Development in Arabidopsis.
Plant Cell Physiol. 2018 Dec 1;59(12):2409-2420. doi: 10.1093/pcp/pcy200.
6
Arogenate dehydratases can modulate the levels of phenylacetic acid in Arabidopsis.
Biochem Biophys Res Commun. 2020 Mar 26;524(1):83-88. doi: 10.1016/j.bbrc.2020.01.041. Epub 2020 Jan 21.
8
Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.
J Biol Chem. 2007 Oct 19;282(42):30827-35. doi: 10.1074/jbc.M702662200. Epub 2007 Aug 28.
9
Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.
Plant Physiol Biochem. 2011 Aug;49(8):882-90. doi: 10.1016/j.plaphy.2011.02.010. Epub 2011 Feb 17.

引用本文的文献

1
Glucosinolate and Sugar Profiles in Space-Grown Radish.
Plants (Basel). 2025 Jul 6;14(13):2063. doi: 10.3390/plants14132063.
3
RNA-seq and metabolomic analyses of beneficial plant phenol biochemical pathways in red alder.
Front Plant Sci. 2024 Nov 7;15:1349635. doi: 10.3389/fpls.2024.1349635. eCollection 2024.
4
Arogenate dehydratases: unique roles in light-directed development during the seed-to-seedling transition in .
Front Plant Sci. 2023 Aug 2;14:1220732. doi: 10.3389/fpls.2023.1220732. eCollection 2023.
6
New Insights Into Lignification via Network and Multi-Omics Analyses of Arogenate Dehydratase Knock-Out Mutants in .
Front Plant Sci. 2021 May 25;12:664250. doi: 10.3389/fpls.2021.664250. eCollection 2021.
8
Regulation of color transition in purple tea (Camellia sinensis).
Planta. 2019 Dec 18;251(1):35. doi: 10.1007/s00425-019-03328-7.
9
Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29.
Photosynth Res. 2020 Jan;143(1):19-30. doi: 10.1007/s11120-019-00676-z. Epub 2019 Oct 28.

本文引用的文献

1
Metabolic Crosstalk: Interactions between the Phenylpropanoid and Glucosinolate Pathways in Arabidopsis.
Plant Cell. 2015 May;27(5):1367. doi: 10.1105/tpc.15.00360. Epub 2015 May 8.
2
Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana.
Plant Cell. 2015 May;27(5):1529-46. doi: 10.1105/tpc.15.00127. Epub 2015 May 5.
3
Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes.
J Biol Chem. 2015 May 29;290(22):14091-106. doi: 10.1074/jbc.M114.619841. Epub 2015 Apr 20.
4
Lights, camera, action: high-throughput plant phenotyping is ready for a close-up.
Curr Opin Plant Biol. 2015 Apr;24:93-9. doi: 10.1016/j.pbi.2015.02.006. Epub 2015 Feb 27.
5
Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.
Phytochemistry. 2015 May;113:140-8. doi: 10.1016/j.phytochem.2014.10.013. Epub 2014 Nov 20.
6
Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes.
Plant Cell Physiol. 2014 Jul;55(7):1245-54. doi: 10.1093/pcp/pcu062. Epub 2014 May 3.
7
Field high-throughput phenotyping: the new crop breeding frontier.
Trends Plant Sci. 2014 Jan;19(1):52-61. doi: 10.1016/j.tplants.2013.09.008. Epub 2013 Oct 16.
9
The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity.
Plant Physiol Biochem. 2013 Nov;72:21-34. doi: 10.1016/j.plaphy.2013.02.001. Epub 2013 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验