Suppr超能文献

相似文献

1
Protease Activities Triggered by Infection in Susceptible and Tolerant Tomato Lines.
Mol Cell Proteomics. 2018 Jun;17(6):1112-1125. doi: 10.1074/mcp.RA117.000052. Epub 2018 Mar 9.
2
The tomato P69 subtilase family is involved in resistance to bacterial wilt.
Plant J. 2024 Apr;118(2):388-404. doi: 10.1111/tpj.16613. Epub 2023 Dec 27.
3
ETI signaling nodes are involved in resistance of Hawaii 7996 to bacterial wilt disease in tomato.
Plant Signal Behav. 2023 Dec 31;18(1):2194747. doi: 10.1080/15592324.2023.2194747.
7
Metabolomic Profiling of the Host Response of Tomato ( Following Infection by .
Int J Mol Sci. 2019 Aug 14;20(16):3945. doi: 10.3390/ijms20163945.
9
Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato.
PLoS One. 2012;7(10):e46763. doi: 10.1371/journal.pone.0046763. Epub 2012 Oct 5.

引用本文的文献

1
Activity-based Tools for Interrogating Host Biology During Infection.
Isr J Chem. 2023 Mar;63(3-4). doi: 10.1002/ijch.202200095. Epub 2023 Feb 16.
3
Metabolic Profiling of Resistant and Susceptible Tobaccos Response Incited by Causing Bacterial Wilt.
Front Plant Sci. 2022 Jan 7;12:780429. doi: 10.3389/fpls.2021.780429. eCollection 2021.
7
The front line of defence: a meta-analysis of apoplastic proteases in plant immunity.
J Exp Bot. 2021 Apr 13;72(9):3381-3394. doi: 10.1093/jxb/eraa602.
8
The Apoplast: A Key Player in Plant Survival.
Antioxidants (Basel). 2020 Jul 10;9(7):604. doi: 10.3390/antiox9070604.
10
Cathepsin L Regulates Metabolic Networks Controlling Rapid Cell Growth and Proliferation.
Mol Cell Proteomics. 2019 Jul;18(7):1330-1344. doi: 10.1074/mcp.RA119.001392. Epub 2019 Apr 22.

本文引用的文献

2
Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato.
Mol Plant Microbe Interact. 2018 Apr;31(4):432-444. doi: 10.1094/MPMI-08-17-0209-R. Epub 2018 Feb 12.
3
DeepLoc: prediction of protein subcellular localization using deep learning.
Bioinformatics. 2017 Nov 1;33(21):3387-3395. doi: 10.1093/bioinformatics/btx431.
4
Papain-like cysteine proteases as hubs in plant immunity.
New Phytol. 2016 Dec;212(4):902-907. doi: 10.1111/nph.14117. Epub 2016 Aug 4.
5
The Perseus computational platform for comprehensive analysis of (prote)omics data.
Nat Methods. 2016 Sep;13(9):731-40. doi: 10.1038/nmeth.3901. Epub 2016 Jun 27.
6
2016 update of the PRIDE database and its related tools.
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56. doi: 10.1093/nar/gkv1145. Epub 2015 Nov 2.
7
Functional Divergence of Two Secreted Immune Proteases of Tomato.
Curr Biol. 2015 Aug 31;25(17):2300-6. doi: 10.1016/j.cub.2015.07.030. Epub 2015 Aug 20.
9
Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory.
Front Plant Sci. 2015 Jun 2;6:352. doi: 10.3389/fpls.2015.00352. eCollection 2015.
10
A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.
Cell. 2015 May 21;161(5):1089-1100. doi: 10.1016/j.cell.2015.04.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验