Suppr超能文献

基于卷积神经网络的膝关节半月板分割:来自 Osteoarthritis Initiative 的数据。

Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative.

机构信息

Zuse Institute Berlin, Berlin, Germany.

TU Darmstadt, Darmstadt, Germany.

出版信息

Osteoarthritis Cartilage. 2018 May;26(5):680-688. doi: 10.1016/j.joca.2018.02.907. Epub 2018 Mar 9.

Abstract

OBJECTIVE

To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof.

METHOD

A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MRI Osteoarthritis Knee Score (MOAKS) experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression.

RESULTS

Segmentation accuracy measured as dice similarity coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ = 0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16 ± 0.93 mm vs 0.83 ± 0.92 mm; P < 0.05).

CONCLUSION

Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA.

摘要

目的

提出一种从 MRI 自动分割膝关节半月板的新方法。评估由此得出的用于骨关节炎 (OA) 的定量半月板生物标志物。

方法

开发了一种结合卷积神经网络和统计形状模型的分割方法。在 88 次手动分割中评估了准确性。计算并测试了半月板体积、胫骨覆盖度和半月板挤出量,并比较了 OA、关节间隙变窄 (JSN) 和 WOMAC 疼痛组之间的差异。对 600 名受试者的计算半月板挤出量与 MRI 骨关节炎膝关节评分 (MOAKS) 专家读数之间的相关性进行了评估。对 552 名患者(184 例新发 OA,386 例对照)进行条件逻辑回归,以测试生物标志物对基线至 24 个月时发生放射学 OA 的预测能力。

结果

内侧半月板 (MM) 和外侧半月板 (LM) 的分割准确率在基线时分别为 83.8%和 88.9%,在 12 个月随访时分别为 83.1%和 88.3%。与非关节炎病例相比,关节炎病例的内侧胫骨覆盖度明显较低。关节炎膝关节的内侧半月板挤出量明显较高。自动计算的内侧半月板挤出量与专家读数之间存在中度相关性 (ρ=0.44)。与对照组相比,新发 OA 病例的内侧半月板挤出量明显更高(1.16±0.93mm 比 0.83±0.92mm;P<0.05)。

结论

特别是对于内侧半月板,实现了非常高的分割准确性。通过与专家读数的比较以及对 OA、JSN 和 WOMAC 疼痛组的分析,验证了我们的半月板生物标志物。证实内侧半月板挤出量是新发 OA 的预测因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验