Dimitriadis George, Neto Joana P, Kampff Adam R
Sainsbury Wellcome Centre, UCL, London W1T 4JG, U.K.
Neural Comput. 2018 Jul;30(7):1750-1774. doi: 10.1162/neco_a_01097. Epub 2018 Jun 12.
Electrophysiology is entering the era of big data. Multiple probes, each with hundreds to thousands of individual electrodes, are now capable of simultaneously recording from many brain regions. The major challenge confronting these new technologies is transforming the raw data into physiologically meaningful signals, that is, single unit spikes. Sorting the spike events of individual neurons from a spatiotemporally dense sampling of the extracellular electric field is a problem that has attracted much attention (Rey, Pedreira, & Quian Quiroga, 2015 ; Rossant et al., 2016 ) but is still far from solved. Current methods still rely on human input and thus become unfeasible as the size of the data sets grows exponentially. Here we introduce the [Formula: see text]-student stochastic neighbor embedding (t-SNE) dimensionality reduction method (Van der Maaten & Hinton, 2008 ) as a visualization tool in the spike sorting process. t-SNE embeds the [Formula: see text]-dimensional extracellular spikes ([Formula: see text] = number of features by which each spike is decomposed) into a low- (usually two-) dimensional space. We show that such embeddings, even starting from different feature spaces, form obvious clusters of spikes that can be easily visualized and manually delineated with a high degree of precision. We propose that these clusters represent single units and test this assertion by applying our algorithm on labeled data sets from both hybrid (Rossant et al., 2016 ) and paired juxtacellular/extracellular recordings (Neto et al., 2016 ). We have released a graphical user interface (GUI) written in Python as a tool for the manual clustering of the t-SNE embedded spikes and as a tool for an informed overview and fast manual curation of results from different clustering algorithms. Furthermore, the generated visualizations offer evidence in favor of the use of probes with higher density and smaller electrodes. They also graphically demonstrate the diverse nature of the sorting problem when spikes are recorded with different methods and arise from regions with different background spiking statistics.
电生理学正在进入大数据时代。多个探头,每个探头都有数百到数千个独立电极,现在能够同时从多个脑区进行记录。这些新技术面临的主要挑战是将原始数据转化为具有生理意义的信号,即单个神经元的尖峰信号。从细胞外电场的时空密集采样中对单个神经元的尖峰事件进行分类是一个备受关注的问题(雷伊、佩德雷拉和基安·基罗加,2015年;罗桑特等人,2016年),但仍远未解决。当前的方法仍然依赖人工输入,因此随着数据集规模呈指数级增长,变得不可行。在这里,我们引入t-学生随机邻域嵌入(t-SNE)降维方法(范德马aten和辛顿,2008年)作为尖峰分类过程中的一种可视化工具。t-SNE将n维细胞外尖峰信号(n = 每个尖峰分解的特征数量)嵌入到低维(通常是二维)空间。我们表明,即使从不同的特征空间开始,这种嵌入也会形成明显的尖峰簇,这些簇很容易可视化,并且可以高精度地手动勾勒出来。我们提出这些簇代表单个单元,并通过将我们的算法应用于来自混合(罗桑特等人,2016年)和成对的细胞旁/细胞外记录(内托等人,2016年)的标记数据集来检验这一断言。我们已经发布了一个用Python编写的图形用户界面(GUI),作为手动聚类t-SNE嵌入尖峰的工具,以及作为对不同聚类算法结果进行明智概述和快速手动整理的工具。此外,生成的可视化结果为使用更高密度和更小电极的探头提供了支持证据。它们还以图形方式展示了用不同方法记录尖峰并从具有不同背景尖峰统计的区域产生时,分类问题的多样性。