Moalla R, Cueff S, Penuelas J, Vilquin B, Saint-Girons G, Baboux N, Bachelet R
Institut des Nanotechnologies de Lyon (INL) - CNRS UMR 5270, Univ. Lyon, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134, Ecully Cedex, France.
Institut des Nanotechnologies de Lyon (INL) - CNRS UMR 5270, Univ. Lyon, INSA de Lyon, Bâtiment Blaise Pascal, 7 avenue Jean Capelle, 69621, Villeurbanne Cedex, France.
Sci Rep. 2018 Mar 12;8(1):4332. doi: 10.1038/s41598-018-22349-y.
Epitaxial PbZrTiO (PZT) layers were integrated on Si(001) with single PZT {001} orientation, mosaïcity below 1° and a majority of a-oriented ferroelectric domains (∼65%). Ferroelectric and pyroelectric properties are determined along both the out-of-plane and in-plane directions through parallel-plate capacitor and coplanar interdigital capacitor along the <100> direction. A large anisotropy in these properties is observed. The in-plane remnant polarization (21.5 µC.cm) is almost twice larger than that measured along the out-of-plane direction (13.5 µC.cm), in agreement with the domain orientation. Oppositely, the in-plane pyroelectric coefficient (-285 µC.m.K) is much lower than that measured out-of-plane (-480 µC.m.K). The pyroelectric anisotropy is explicated in term of degree of structural freedom with temperature. In particular, the low in-plane pyroelectric coefficient is explained by a two-dimensional clamping of the layers on the substrate which induces tensile stress (from thermal expansion), competing with the decreasing tetragonality of a-domains (shortening of the polar c-axis lattice parameter). Temperature-dependent XRD measurements have revealed an increased fraction of a-domains with temperature, attesting the occurrence of a partial two-dimensional clamping. These observed properties are of critical importance for integrated pyroelectric devices.
外延PbZrTiO(PZT)层集成在具有单一PZT {001}取向、镶嵌度低于1°且大部分为a取向铁电畴(约65%)的Si(001)上。通过沿<100>方向的平行板电容器和共面叉指电容器,在面外和面内方向上测定铁电和热电性能。观察到这些性能存在很大的各向异性。面内剩余极化强度(21.5 µC·cm)几乎是沿面外方向测量值(13.5 µC·cm)的两倍,这与畴取向一致。相反,面内热释电系数(-285 µC·m·K)远低于面外测量值(-480 µC·m·K)。热释电各向异性是根据温度下的结构自由度来解释的。特别是,面内热释电系数较低是由于层在衬底上的二维夹紧,这会引起拉伸应力(来自热膨胀),与a畴四方性的降低(极性c轴晶格参数缩短)相互竞争。随温度变化的XRD测量表明,a畴的比例随温度增加,证明了部分二维夹紧的发生。这些观察到的性能对于集成热释电器件至关重要。