Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK.
Warwick Systems Biology Centre, University of Warwick, Coventry, UK.
Nat Nanotechnol. 2018 May;13(5):386-391. doi: 10.1038/s41565-018-0084-4. Epub 2018 Mar 12.
Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering . Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro and in vivo , but the results are conflicting and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by ~1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.
驱动蛋白-1 是一种纳米级分子马达,它朝着微管快速生长的(+)端移动,将分子货物运送到细胞内的特定反应部位。驱动蛋白驱动的运输是真核细胞自我组织的核心,并且作为纳米工程的工具具有很大的前景。最近的工作表明,驱动蛋白在体外和体内可能也在调节其微管轨道的稳定性方面发挥作用,但结果相互矛盾,机制尚不清楚。在这里,我们报告了驱动蛋白-微管相互作用的一个新维度,即强结合状态(三磷酸腺苷(ATP)结合和脱辅基)的驱动蛋白-1 马达结构域抑制鸟苷二磷酸(GDP)微管的收缩高达两个数量级,并将其晶格间距扩大约 1.6%。我们的数据揭示了一个出人意料的机制,即驱动蛋白和微管蛋白的机械化学循环相互锁定,从而使运动的驱动蛋白能够影响其微管轨道的结构、稳定性和力学性能。