Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405.
Department of Mathematical Sciences, and Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2407330121. doi: 10.1073/pnas.2407330121. Epub 2024 Jul 9.
Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with 20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.
驱动蛋白-1 复合物通过三维(3D)细胞内微管(MT)网络来操纵囊泡货物。为了确定这种货物如何在 MT 交叉点处导航,我们首先确定了在基于脂质的货物上的复合物中有多少个驱动蛋白同时与 MT 结合,然后确定了脂质体货物在垂直 MT 交叉点处的定向结果(直走、转弯、停止)。用最多 20 个组成型激活的截断驱动蛋白-1 KIF5B(K543)修饰的 350nm 直径的脂质体的运行长度长于单个马达运输的货物,表明多个马达参与。然而,使用光阱测量的涂有脂质的珠子的分离力表明,同时参与的马达不超过三个,并且单个参与的马达占主导地位,表明 MT 结合的抗协同性。在二维(2D)和 3D 体外 MT 交叉点处,脂质体经常停顿(2s),表明驱动蛋白同时结合两个 MT 并参与拔河比赛。脂质体在 2D 中没有定向结果偏差(1.1 直:转弯比),但在 3D 交叉点处优先直走(1.8 直:转弯比)。为了解释这些数据,我们开发了一个包含已知驱动蛋白机械化学的脂质体运输的数学模型,该模型将驱动蛋白扩散到脂质体表面上,并在压缩和延伸时具有僵硬的尾巴,这会影响马达与相交 MT 的结合方式。我们的模型预测了在光阱中观察到的3 个参与的马达限制以及在 3D 交叉点处直走的趋势。这些结果与我们之前关于肌球蛋白 Va 运输脂质体的研究非常相似,这表明了货物在 3D 交叉点处导航的“通用”机制。