Shinsky Stephen A, Christianson David W
Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States.
Biochemistry. 2018 Jun 5;57(22):3105-3114. doi: 10.1021/acs.biochem.8b00079. Epub 2018 Mar 21.
Polyamines such as putrescine, spermidine, and spermine are small aliphatic cations that serve myriad biological functions in all forms of life. While polyamine biosynthesis and cellular trafficking pathways are generally well-defined, only recently has the molecular basis of reversible polyamine acetylation been established. In particular, enzymes that catalyze polyamine deacetylation reactions have been identified and structurally characterized: histone deacetylase 10 (HDAC10) from Homo sapiens and Danio rerio (zebrafish) is a highly specific N-acetylspermidine deacetylase, and its prokaryotic counterpart, acetylpolyamine amidohydrolase (APAH) from Mycoplana ramosa, is a broad-specificity polyamine deacetylase. Similar to the greater family of HDACs, which mainly serve as lysine deacetylases, both enzymes adopt the characteristic arginase-deacetylase fold and employ a Zn-activated water molecule for catalysis. In contrast with HDACs, however, the active sites of HDAC10 and APAH are sterically constricted to enforce specificity for long, slender polyamine substrates and exclude bulky peptides and proteins containing acetyl-l-lysine. Crystal structures of APAH and D. rerio HDAC10 reveal that quaternary structure, i.e., dimer assembly, provides the steric constriction that directs the polyamine substrate specificity of APAH, whereas tertiary structure, a unique 3 helix defined by the P(E,A)CE motif, provides the steric constriction that directs the polyamine substrate specificity of HDAC10. Given the recent identification of HDAC10 and spermidine as mediators of autophagy, HDAC10 is rapidly emerging as a biomarker and target for the design of isozyme-selective inhibitors that will suppress autophagic responses to cancer chemotherapy, thereby rendering cancer cells more susceptible to cytotoxic drugs.
腐胺、亚精胺和精胺等多胺是小脂肪族阳离子,在所有生命形式中发挥着无数生物学功能。虽然多胺生物合成和细胞运输途径总体上已得到明确界定,但直到最近才确立了可逆多胺乙酰化的分子基础。特别是,催化多胺脱乙酰化反应的酶已被鉴定并进行了结构表征:来自智人和斑马鱼的组蛋白脱乙酰酶10(HDAC10)是一种高度特异性的N - 乙酰亚精胺脱乙酰酶,其原核对应物,来自分枝杆菌的乙酰多胺酰胺水解酶(APAH)是一种具有广泛特异性的多胺脱乙酰酶。与主要作为赖氨酸脱乙酰酶的更大的HDAC家族类似,这两种酶都采用特征性的精氨酸酶 - 脱乙酰酶折叠结构,并利用锌激活的水分子进行催化。然而,与HDAC不同的是,HDAC10和APAH的活性位点在空间上受到限制,以确保对长而细的多胺底物具有特异性,并排除含有乙酰 - L - 赖氨酸的大分子肽和蛋白质。APAH和斑马鱼HDAC10的晶体结构表明,四级结构,即二聚体组装,提供了指导APAH多胺底物特异性的空间限制,而三级结构,由P(E,A)CE基序定义的独特三螺旋结构,提供了指导HDAC10多胺底物特异性的空间限制。鉴于最近已鉴定出HDAC10和亚精胺作为自噬的介质,HDAC10正迅速成为一种生物标志物和设计同工酶选择性抑制剂的靶点,这些抑制剂将抑制对癌症化疗的自噬反应,从而使癌细胞对细胞毒性药物更敏感。