Suppr超能文献

智能手表算法自动检测心房颤动。

Smartwatch Algorithm for Automated Detection of Atrial Fibrillation.

机构信息

Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio.

Cleveland Clinic Coordinating Center for Clinical Research (C5Research), Cleveland Clinic, Cleveland, Ohio.

出版信息

J Am Coll Cardiol. 2018 May 29;71(21):2381-2388. doi: 10.1016/j.jacc.2018.03.003. Epub 2018 Mar 10.

Abstract

BACKGROUND

The Kardia Band (KB) is a novel technology that enables patients to record a rhythm strip using an Apple Watch (Apple, Cupertino, California). The band is paired with an app providing automated detection of atrial fibrillation (AF).

OBJECTIVES

The purpose of this study was to examine whether the KB could accurately differentiate sinus rhythm (SR) from AF compared with physician-interpreted 12-lead electrocardiograms (ECGs) and KB recordings.

METHODS

Consecutive patients with AF presenting for cardioversion (CV) were enrolled. Patients underwent pre-CV ECG along with a KB recording. If CV was performed, a post-CV ECG was obtained along with a KB recording. The KB interpretations were compared to physician-reviewed ECGs. The KB recordings were reviewed by blinded electrophysiologists and compared to ECG interpretations. Sensitivity, specificity, and K coefficient were measured.

RESULTS

A total of 100 patients were enrolled (age 68 ± 11 years). Eight patients did not undergo CV as they were found to be in SR. There were 169 simultaneous ECG and KB recordings. Fifty-seven were noninterpretable by the KB. Compared with ECG, the KB interpreted AF with 93% sensitivity, 84% specificity, and a K coefficient of 0.77. Physician interpretation of KB recordings demonstrated 99% sensitivity, 83% specificity, and a K coefficient of 0.83. Of the 57 noninterpretable KB recordings, interpreting electrophysiologists diagnosed AF with 100% sensitivity, 80% specificity, and a K coefficient of 0.74. Among 113 cases where KB and physician readings of the same recording were interpretable, agreement was excellent (K coefficient = 0.88).

CONCLUSIONS

The KB algorithm for AF detection supported by physician review can accurately differentiate AF from SR. This technology can help screen patients prior to elective CV and avoid unnecessary procedures.

摘要

背景

Kardia 腕带(KB)是一种新型技术,可让患者使用 Apple Watch(苹果公司,加利福尼亚州库比蒂诺)记录节律带。该腕带与一个提供心房颤动(AF)自动检测的应用程序配对。

目的

本研究旨在检查 KB 是否能准确地区分窦性节律(SR)与 AF,与医生解读的 12 导联心电图(ECG)和 KB 记录进行比较。

方法

连续入组因需要电复律(CV)而就诊的 AF 患者。患者接受 CV 前 ECG 检查,并同时进行 KB 记录。如果进行 CV,则获得 CV 后 ECG 检查,并同时进行 KB 记录。将 KB 解读与医生审查的 ECG 进行比较。KB 记录由盲法电生理学家审查,并与 ECG 解读进行比较。测量了敏感性、特异性和 K 系数。

结果

共入组 100 例患者(年龄 68±11 岁)。有 8 例患者因发现处于 SR 而未进行 CV。共有 169 例同时进行 ECG 和 KB 记录。57 例 KB 记录不可解读。与 ECG 相比,KB 以 93%的敏感性、84%的特异性和 0.77 的 K 系数解读 AF。KB 记录的医生解读显示 99%的敏感性、83%的特异性和 0.83 的 K 系数。在 57 例不可解读的 KB 记录中,电生理学家解读诊断 AF 的敏感性为 100%,特异性为 80%,K 系数为 0.74。在 113 例 KB 和医生对同一记录进行解读的情况下,一致性非常好(K 系数=0.88)。

结论

由医生审查支持的 AF 检测 KB 算法可以准确地区分 AF 与 SR。该技术可帮助筛选出择期 CV 前的患者,避免不必要的程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验