Proix Timothée, Jirsa Viktor K, Bartolomei Fabrice, Guye Maxime, Truccolo Wilson
Department of Neuroscience, Brown University, Providence, RI, 02912, USA.
Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
Nat Commun. 2018 Mar 14;9(1):1088. doi: 10.1038/s41467-018-02973-y.
Recent studies have shown that seizures can spread and terminate across brain areas via a rich diversity of spatiotemporal patterns. In particular, while the location of the seizure onset area is usually invariant across seizures in an individual patient, the source of traveling (2-3 Hz) spike-and-wave discharges during seizures can either move with the slower propagating ictal wavefront or remain stationary at the seizure onset area. Furthermore, although many focal seizures terminate synchronously across brain areas, some evolve into distinct ictal clusters and terminate asynchronously. Here, we introduce a unifying perspective based on a new neural field model of epileptic seizure dynamics. Two main mechanisms, the co-existence of wave propagation in excitable media and coupled-oscillator dynamics, together with the interaction of multiple time scales, account for the reported diversity. We confirm our predictions in seizures and tractography data obtained from patients with pharmacologically resistant epilepsy. Our results contribute toward patient-specific seizure modeling.
最近的研究表明,癫痫发作可以通过丰富多样的时空模式在脑区之间传播和终止。特别是,虽然癫痫发作起始区的位置在个体患者的不同发作中通常是不变的,但发作期间传播的(2-3赫兹)棘波-慢波放电源既可以随着传播较慢的发作波前移动,也可以停留在癫痫发作起始区。此外,尽管许多局灶性癫痫发作在脑区之间同步终止,但有些会演变成不同的发作簇并异步终止。在此,我们基于一种新的癫痫发作动力学神经场模型引入了一个统一的观点。两个主要机制,即可兴奋介质中波传播与耦合振荡器动力学的共存,以及多个时间尺度的相互作用,解释了所报道的多样性。我们在从药物难治性癫痫患者获得的癫痫发作和纤维束成像数据中证实了我们的预测。我们的结果有助于进行针对患者的癫痫发作建模。