Suppr超能文献

通过低功率激光照射调控人肝癌细胞系Huh7中的线粒体活性。

Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation.

作者信息

Lynnyk Anna, Lunova Mariia, Jirsa Milan, Egorova Daria, Kulikov Andrei, Kubinová Šárka, Lunov Oleg, Dejneka Alexandr

机构信息

Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.

Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic.

出版信息

Biomed Opt Express. 2018 Feb 21;9(3):1283-1300. doi: 10.1364/BOE.9.001283. eCollection 2018 Mar 1.

Abstract

Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses.

摘要

低功率红光激光照射已被公认为是一种在众多生物医学应用中颇具前景的工具。然而,深入了解激光诱导细胞效应背后的分子机制仍然是一项重大挑战。在此,我们研究了在激光照射下人肝癌细胞系Huh7死亡过程中涉及的机制。我们区分了不同功率激光照射所靶向的不同细胞死亡途径。我们的数据表明,高剂量激光照射产生的总活性氧水平最高,通过线粒体通透性转换导致亲环素D相关的坏死。相反,低剂量激光照射导致超氧化物在细胞核中积累并引发凋亡。我们的研究结果为激光诱导的细胞反应提供了新的见解,并揭示了激光照射引发的不同细胞死亡途径。观察到的线粒体去极化与活性氧触发之间的联系可能是激光诱导细胞反应中的一个基本现象。

相似文献

1
Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation.
Biomed Opt Express. 2018 Feb 21;9(3):1283-1300. doi: 10.1364/BOE.9.001283. eCollection 2018 Mar 1.
3
Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations.
Cell Mol Life Sci. 2020 Jul;77(14):2815-2838. doi: 10.1007/s00018-019-03321-z. Epub 2019 Oct 3.
4
Chemically different non-thermal plasmas target distinct cell death pathways.
Sci Rep. 2017 Apr 4;7(1):600. doi: 10.1038/s41598-017-00689-5.
10
Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer.
Theranostics. 2019 Jan 1;9(1):167-178. doi: 10.7150/thno.28033. eCollection 2019.

引用本文的文献

1
Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment.
ACS Biomater Sci Eng. 2023 May 8;9(5):2408-2425. doi: 10.1021/acsbiomaterials.2c01518. Epub 2023 Mar 31.
2
Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
Sci Rep. 2022 Jul 13;12(1):11938. doi: 10.1038/s41598-022-15639-z.
3
Effects of photobiomodulation on the redox state of healthy and cancer cells.
Biomed Opt Express. 2021 Jun 8;12(7):3902-3916. doi: 10.1364/BOE.421302. eCollection 2021 Jul 1.
4
Liver Organoids: Recent Developments, Limitations and Potential.
Front Med (Lausanne). 2021 May 5;8:574047. doi: 10.3389/fmed.2021.574047. eCollection 2021.
5
Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis.
Pharmaceuticals (Basel). 2020 Nov 28;13(12):430. doi: 10.3390/ph13120430.
7
The Influence of Light on Reactive Oxygen Species and NF-кB in Disease Progression.
Antioxidants (Basel). 2019 Dec 12;8(12):640. doi: 10.3390/antiox8120640.
9
Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations.
Cell Mol Life Sci. 2020 Jul;77(14):2815-2838. doi: 10.1007/s00018-019-03321-z. Epub 2019 Oct 3.
10
Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition.
Nanomaterials (Basel). 2019 Mar 18;9(3):451. doi: 10.3390/nano9030451.

本文引用的文献

1
Molecular response of mitochondria to a short-duration femtosecond-laser stimulation.
Biomed Opt Express. 2017 Oct 10;8(11):4965-4973. doi: 10.1364/BOE.8.004965. eCollection 2017 Nov 1.
3
Design and manufacturing challenges of optogenetic neural interfaces: a review.
J Neural Eng. 2017 Aug;14(4):041001. doi: 10.1088/1741-2552/aa7004.
4
Blue light effect on retinal pigment epithelial cells by display devices.
Integr Biol (Camb). 2017 May 22;9(5):436-443. doi: 10.1039/c7ib00032d.
5
Chemically different non-thermal plasmas target distinct cell death pathways.
Sci Rep. 2017 Apr 4;7(1):600. doi: 10.1038/s41598-017-00689-5.
6
The role of mitochondria in metabolism and cell death.
Biochem Biophys Res Commun. 2017 Jan 15;482(3):426-431. doi: 10.1016/j.bbrc.2016.11.088. Epub 2017 Feb 3.
8
Molecular crosstalk between apoptosis, necroptosis, and survival signaling.
Mol Cell Oncol. 2015 Apr 8;2(4):e975093. doi: 10.4161/23723556.2014.975093. eCollection 2015 Oct-Dec.
9
Photostimulation by femtosecond laser triggers restorable fragmentation in single mitochondrion.
J Biophotonics. 2017 Feb;10(2):286-293. doi: 10.1002/jbio.201500281. Epub 2016 Feb 5.
10
The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma.
Biomaterials. 2016 Mar;82:71-83. doi: 10.1016/j.biomaterials.2015.12.027. Epub 2015 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验