Xu Shiyu, Lu Jianping, Zhou Otto, Chen Ying
Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901.
Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599.
Med Phys. 2015 Sep;42(9):5377-90. doi: 10.1118/1.4928603.
Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means of overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors' goal was to develop techniques for applying statistical IR to tomosynthesis imaging data.
These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction.
IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images.
Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.
数字乳腺断层合成(DBT)是一种新型成像模式,有潜力通过提供低辐射剂量的三维(3D)成像来改善乳腺癌的早期检测。3D图像重建存在一些挑战:锥束和平板几何结构以及高度不完全采样。克服这些挑战的一种有前景的方法是统计迭代重建(IR),因为它提供了精确物理建模的灵活性和系统几何结构的一般描述。作者的目标是开发将统计IR应用于断层合成成像数据的技术。
这些技术包括以下内容:一种基于局部体素对的先验物理模型,其具有灵活参数以微调图像质量;先验中的预计算参数λ,以消除数据依赖性并实现均匀分辨率特性;一种有效的射线驱动技术来计算正向和反向投影;以及一种过采样的、射线驱动的方法,用于通过实用的感兴趣区域技术进行高分辨率重建。为了评估这些技术的性能,作者在固定的DBT原型系统上获取了体模数据。为了解决估计问题,作者提出了一种基于优化传递的算法框架,该框架可能允许更少的迭代次数来实现可接受的收敛重建。
IR提高了低对比度和微小钙化的可检测性,减少了跨平面伪影,提高了空间分辨率,并降低了重建图像中的噪声。
尽管计算负荷对于实际开发仍然是一个重大挑战,但统计IR提供的卓越图像质量,结合不断发展的计算技术,可能会给临床应用中的筛查、诊断和术中成像带来益处。